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We discuss γ∗γ∗→ ηc(1S) , ηc(2S) transition form factors for both virtual photons. The general
formula is given. We use different models for the cc̄ wave function obtained from the solution
of the Schrödinger equation for different cc̄ potentials: harmonic oscillator, Cornell, logarithmic,
power-law, Coulomb and Buchmüller-Tye. We showed some examples of wave functions in the
Light Front representation as well as in the rest frame of cc̄ pair. We compare our results to
the BaBar experimental data for ηc(1S), for one real and one virtual photon, and to the values
collected by the Particle Data Group for F(0,0), decay width Γγγ and decay constant fηc . We
also considered the non-relativistic limit for F(0,0) form factor with the wave function at the
origin R(0).
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1. Introduction

During the last few years, the pseudoscalar charmonium states ηc(1S) and its radial excitation
ηc(2S) have attracted a lot of attention from both theoretical [1, 2] and experimental [3, 4, 5]
communities. So far, CLEO, BABAR, Belle, L3 collaborations have extracted the transition form
factor for light mesons (π0 ,η ,η

′
) from events, where only one of the leptons in the final state could

be measured in the electromagnetic process depicted in Fig. 1. A similar analysis was done for
ηc(1S) by the BABAR collaboration. The study of transition form factor for both off-shell photons
is motivated by a possibility for an accurate measurement of the double-tag mode, considering high
luminosity at the Belle2 experiment.

ηc(1S, 2S)

e−

e+

γ∗

γ∗

Q2
1

Q2
2
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Figure 1: Feynman diagram for the process e+e−→ e+ ηc(1S,2S)e−

The matrix element for the γ∗γ∗ → ηc fusion can be written in terms of the F(Q2
1,Q

2
2) form

factor as follows

Mµν(γ
∗(q1)γ

∗(q2)→ ηc) = 4παem (−i)εµναβ qα
1 qβ

2 F(Q2
1,Q

2
2) . (1.1)

Here, Q2
i =−q2

i > 0 , i = 1,2 are space like virtualities of the initial photons. In order to construct
the γ∗γ∗ → ηc(1S) , ηc(2S) amplitude, one can use the Light-Front (LF) wave function ψ(z,k⊥)
such that the corresponding form factor F(Q2

1,Q
2
2) reads [7]:

F(Q2
1,Q

2
2) = e2

c
√

Nc4mc ·
∫ dzd2k

z(1− z)16π3 ψ(z,k)
{ 1− z
(k− (1− z)q2)

2 + z(1− z)q2
1 +m2

c

+
z

(k+ zq2)
2 + z(1− z)q2

1 +m2
c

}
. (1.2)

Here, (z,k) are the LF variables, z and 1− z are the longitudinal momentum fractions of c and c̄,
respectively, and k is the relative momentum between c and c̄ in the center-of-mass of the cc̄ pair.
In Fig. 2 we present our main new result on the dependence of the transition form factor on both
photon virtualities Q2

1 and Q2
2 in the case of the Buchmüller-Tye interquark interaction potential [6]

(for more details and results, see Ref. [7]). Below, we discuss some basic details of our analysis.

2. Radial momentum-space wave function and boosting

The radial wave function in the rest frame of the quark-antiquark pair is obtained by solving
the Schrödinger equation

∂ 2u(r)
∂ r2 = (Veff(r)− ε)u(r) , u(r) =

√
4π rψ(r) , (2.1)
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Figure 2: Transition form factor for ηc(1S) and ηc(2S) computed by using the Buchmüller-Tye potential
[6].

in terms of the effective interquark interaction potential Veff(r) (for more details, see e.g. Ref. [8]).
Then one turns to the momentum space representation preserving the normalisation of the wave
function

∞∫
0

|u(r)|2dr = 1 ⇒
∫

∞

0
|u(p)|2d p = 1 . (2.2)

One notices in Fig. 3 that the wave function u(p) found numerically for each potential has a some-
what different behaviour which, in particular, is sensitive to the value of the constituent c-quark
mass.
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Figure 3: The radial momentum-space wave function for ηc(1S) (left panel) and for ηc(2S) (right panel)
states for different potentials.

In further calculations we have used the popular Terent’ev prescription [9] giving rise to the
LF quarkonium wave function in the following form

ψ(z,k⊥) =
π√

2Mcc̄

u(p)
p

, (2.3)
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using the kinematical quantities

p⊥ = k⊥, pz = (z− 1
2
)Mcc̄ , M2

cc̄ =
k⊥+m2

c

z(1− z)
, (2.4)

and properly accounting for the Jacobian of transformation of the integration variables. An example
of the LF wave function is shown in Fig. 4, for the Buchmüller-Tye potential model [6]. One can
observe that, quite naturally, the wave function is strongly peaked around z∼ 1/2.
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Figure 4: The radial LF wave function computed by using the Buchmüller-Tye potential [6].

3. Transition form factor for both on-shell photons

In order to write down the formula for both on-shell photons, we can directly simplify Eq. (1.2)
as follows

F(0,0) = e2
c
√

Nc 4mc ·
∫ dzd2k⊥

z(1− z)16π3
ψ(z,k⊥)
k2
⊥+m2

c
, (3.1)

and then the relation between the two-photon decay width and F(0,0) can be found in the form

Γ(ηc→ γγ) =
π

4
α

2
emM3

ηc
|F(0,0)|2 . (3.2)

The so-called meson decay constant fηc can be extracted numerically as follows

fηcϕ(z,µ
2
0 ) =

1
z(1− z)

√
Nc 4mc

16π3

∫
d2k⊥θ(µ2

0 − k2
⊥)ψ(z,k⊥) ,

∫ 1

0
dzϕ(z,µ2

0 ) = 1 . (3.3)

The on-shell form factor F(0,0) can further be rewritten in terms of the radial momentum-
space wave function u(p):

F(0,0) = e2
c

√
2Nc

2mc

π

∫
∞

0

d p pu(p)√
M3

cc̄(p2 +m2
c)

1
2β

log
(

1+β

1−β

)
, β =

p√
p2 +m2

c
, (3.4)
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in terms of β being the velocity v/c of the quark in the cc̄ center of mass frame. In the non-
relativistic limit, corresponding to β � 1, p2/m2

c � 1, and 2mc = Mcc̄ (or 2mc = Mηc), we obtain

F(0,0) = e2
c
√

Nc
√

2
4

π

√
M5

ηc

∫
∞

0
d p pu(p) = e2

c
√

Nc
4R(0)√

πM5
ηc

, (3.5)

where R(0) is the radial wave function at the origin. The values of the transition form factor for
both on-shell photons, the decay constant as well as the decay width Γγγ are collected in Table 1
for ηc(1S) and in Table 2 for ηc(2S) states.

Table 1: Transition form factor |F(0,0)| for ηc(1S) at Q2
1 = Q2

2 =0.

potential type mc [GeV] |F(0,0)| [GeV−1] Γγγ [keV] fηc[GeV]
harmonic oscillator 1.4 0.051 2.89 0.2757
logarithmic 1.5 0.052 2.95 0.3373
power-like 1.334 0.059 3.87 0.3074
Cornell 1.84 0.039 1.69 0.3726
Buchmüller-Tye 1.48 0.052 2.95 0.3276
experiment - 0.067 ± 0.003 [10] 5.1 ± 0.4 [10] 0.335 ± 0.075 [11]

Table 2: Transition form factor |F(0,0)| for ηc(2S) at Q2
1 = Q2

2 =0.

potential type mc [GeV] |F(0,0)| [GeV−1] Γγγ [keV] fηc [GeV]
harmonic oscillator 1.4 0.03492 2.454 0.2530
logarithmic 1.5 0.02403 1.162 0.1970
power-like 1.334 0.02775 1.549 0.1851
Cornell 1.84 0.02159 0.938 0.2490
Buchmüller-Tye 1.48 0.02687 1.453 0.2149
experiment [10] - 0.03266 ± 0.01209 2.147 ± 1.589 -

We have also calculated the normalized transition form factor F(Q2,0)/F(0,0) with the aim of
comparison of our results to the experimental data obtained by the BABAR collaboration [12], see
Fig. 5. The right panel in Fig. 5 presents the prediction for the normalized transition form factor for
ηc(2S) meson. The results are rather different between the predictions obtained with each model
of the interquark interaction potential. We noticed that the best description of the data in provided
by the model with mc = 1.334 GeV. We observe a strong dependence on the charm quark mass.

4. Conclusion

In this report, we present our recent results on the transition form factor for different wave
functions obtained as a solution of the Schrödinger equation for the cc̄ system for different phe-
nomenological cc̄ potentials from the literature. More details and results can be found in Ref. [7].
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Figure 5: Normalized transition form factor F(Q2,0)/F(0,0) as a function of photon virtuality Q2. The
BABAR data [12] are shown for comparison.

We have studied the transition form factors for γ∗γ∗→ ηc(1S,2S) for two space-like virtual pho-
tons, which can be accessed experimentally in future measurements of the cross section for the
e+e−→ e+e−ηc process in the double-tag mode. The form factor for only one off-shell photon as
a function of its virtuality has been compared to the BaBar data for the ηc(1S) case.
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