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Probing NP with dipoles L. Vale Silva

1. Introduction

Dipole operators encode a rich variety of phenomena, such as radiative decays and Electric
Dipole Moments (EDMs) in both quark and lepton sectors, thus probing the Standard Model (SM)
structure, and setting bounds on the amount of CP violation and flavor structure of generic exten-
sions of the SM manifesting in dipoles. Moreover, through renormalization, non-dipole operators
mix into dipole ones, then possibly generating observable effects that can be investigated by the
same phenomena that probe directly dipole operators.

Given the persistent absence of experimental evidence for non-SM particles below the EW
scale, much attention has been given to the systematic study of operators of dimension higher
than four involving SM fields only and respecting SM gauged symmetries, suppressed by some
power of the characteristic scale of New Physics (NP). In this so-called SM Effective Field Theory
(SMEFT) framework, the one-loop Anomalous Dimension Matrix (ADM) of the full set of dim.-six
operators was calculated by [1, 2, 3]. The presence of mixing into dipole operators at one-loop sets
important bounds on instances of operators of classes H2X2 (involving two scalar fields and two
field strength tensors), X3 (involving three field strength tensors), and ψ4 (involving four fermions),
cf. e.g. [3, 4].

Here, we calculate the mixing into dipoles in some cases where the leading order effect hap-
pens at two-loops, i.e., when one-loop ADM elements vanish. Namely, operators of type ψ2H3,
involving two fermions and three scalars. We then discuss phenomenological bounds on the effec-
tive coupling of ψ2H3, notably charged lepton radiative decays, and electron and neutron EDMs.
While preparing this work, a subset of our results, necessary in the discussion of eEDM, were
independently derived in Ref. [5], which we verify.

2. Basis of operators

We consider the SM Lagrangian LSM, added by Right-Handed (RH) neutrinos to enlarge the
scope of our analysis, and dimension-six operators, L = LSM+νR +∑iCiQi, where

LSM+νR = −1
4

GA
µν GAµν − 1

4
W I

µνW Iµν − 1
4

Bµν Bµν +(Dµ H†)(Dµ H)+ ∑
ψ=q,u,d,`,e,νR

ψ̄i /Dψ (2.1)

− λ

(
H†H− 1

2
v2
)2

−
[

1
2
(νRCMν νR)+H† jd̄Ydq j + H̃† jūYuq j +H† j ēYe` j + H̃† j

ν̄RYν` j +h.c.
]

A basis of operators Qi of dimension-six can be found at [6], hereafter called the Warsaw basis,
while a basis of operators of dimension-six involving RH neutrinos can be found at, e.g., [7].

To full generality, the renormalization of gauge invariant operators requires, apart from gauge
invariant operators themselves (e.g., the operators of the Warsaw basis), referred in the following
as physical operators, operators that vanish via EOMs (Equations of Motion), and so-called BRST-
exact operators, i.e., operators that are the BRST-variation of another operator; conversely, the
renormalization of non-physical operators does not require physical operators as their counter-
terms [8, 9]. Operators are non-physical if their matrix elements between physical states vanish
[10], and physical otherwise, a property that is then preserved by renormalization.
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When computing the renormalization constants of physical operators in an off-shell scheme,
it is fundamental to separate out the effects of other, non-physical classes of operators. It is then
necessary to have a basis for these operators, which includes, as an example,

Q2−Γ[W ] ≡ g2W I
µ(∂ν ψ̄L)Γ

µν
τ

I(i /DψL)−ΣξY †
ξ

g2W I
µ(∂ν ψ̄L)Γ

µν
τ

I
ξRϕ , Γ = η ,σ (2.2)

which is explicitly gauge variant. Note that the last term of Q2−Γ[W ] defined above carries the same
fields of a dipole operator. A basis of non-physical operators will be discussed at [11].

3. Extraction of the renormalization constants

Since dimension-six dipole operators have in their field content exactly two fermions, the nat-
ural choice of Green’s functions to determine the renormalization constants involves two fermions
as well, of which we consider those involving as external legs the fields of ψ̄LψRAH, ψ̄RψLAH,
ψ̄LψLA, ψ̄RψRA, ψ̄LψRH, ψ̄RψLH, ψ̄LψL, and ψ̄RψR (that prove being sufficient in order to extract
the renormalization constants of interest), where A is an arbitrary gauge boson field. Solving the
set of linear equations resulting from insertions of all possible operators for the renormalization
matrix elements describing the mixing among different physical operators,1 we have

ZO,gX ψ2XH

(—)
MS
=

1
4 gX

{
gX QX

R

(
−2 Coef.

1/ε

[GO (ψ̄LψRH), p2]+Coef.
1/ε

[GO (ψ̄LψRH), p · p′]+2 Coef.
1/ε

[GO (ψ̄LψRH), /p/p′]
)

+gX QX
L

(
−2 Coef.

1/ε

[GO (ψ̄LψRH), p′2]+Coef.
1/ε

[GO (ψ̄LψRH), p · p′]+2 Coef.
1/ε

[GO (ψ̄LψRH), /p/p′]
)

+2 Coef.
1/ε

[GO (ψ̄LψRAH),/k /ε(k)]
}

(3.1)

in the particular case where Green’s functions of external legs ψ̄LψLA, ψ̄RψRA, ψ̄LψL, and ψ̄RψR

vanish, where gX are gauge couplings, and QX
L and QX

R are charges of left- and right-handed fields.
The kinematics is: p (p′) is the momentum of the incoming (respec., outgoing) fermion, and k (ε)
is the momentum (polarization) of the outgoing gauge boson (the momentum of the outgoing scalar
is re-expressed in terms of the other momenta); all momenta are directed as incoming. Note that
Green’s functions of the kind ψ̄LψRH proportional to (p+ p′)2 do not contribute to ZO,gX ψ2XH .

In the following, we will also give results for the case of νR. There are Majorana mass terms
that contribute to the EOMs of right-handed neutrinos, and new possibilities for dimension-five
operators that also violate leptonic numbers. However, the presence of these terms do not change
the relation of the Green’s functions and the renormalization constants, since they do not lead to
contributions to the Green’s functions discussed so far.

We consider dimensional regularization in D = 4− 2ε dimensions. It is possible to state the
RGE compactly as

dCT (µ)

d`n(µ)
=−CT (µ)

(
dZ

d`n(µ)
Z−1−Z(ε∆+ γMN)Z−1

)
≡CT (µ)γ (3.2)

1It also results a certain number of equations relating solely Green’s functions, that we explicitly verify in our
calculations to hold for the 1/ε2 terms.
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where γ is the ADM, and ∆,N are diagonal matrices of elements δ ,n: for the dimension-six Yukawa
operator δ = −3,n = 2; for the dipole δ = −1,n = 2. The term proportional to the mass ADM
does not contribute to the off-diagonal elements of γ . Above, Zi j = δi j +Σk

ck
4π
(Zk)

(1)
i j + . . ., with

(Zk)
(n) = ∑

n
r=0

1
εr (Zk)

(n)
r , where ck denotes a collection of couplings.

The renormalization constant is expanded in the different couplings as follows

ZX , βα f g
ψ2H3,gX ψ2XH =

[(
g2

Y
4π

(ZX
Y )

(1)
1 +

g2
L

4π
(ZX

L )
(1)
1 +

g2
c

4π
(ZX

c )
(1)
1 +

λ

4π
(ZX

λ
)
(1)
1 +

ΣY Σk,lY ∗kl ×Ylk

4π
(ZX

det2)
(1)
1

)
δ f β δgα

+
Σl(Y †) f l ×Ylβ

4π
δgα (ZX

y,y)
(1)
1 +

(Y †)gβ × (Y †)α f

4π
(ZX

Y,y)
(1)
1 +

ΣkYαk× (Y †)kg

4π
δ f β (Z

X
Y,Y )

(1)
1

]
1
ε
+ . . . (3.3)

where α,β ( f ,g) designate the flavor indices of ψ2H3 (respec., dipole), and the ellipses indicate
higher-order terms in the counting of the couplings. At two-loops, the two operators ψ2H3 and
ψ2XH have the same type of RH field (for instance, uR, etc., and not dR, etc.), and the indicated
Yukawa matrix is the one corresponding to this field (respec., Yu, etc.), with the exception of the
“det2” case, that involves all possible Yukawa matrices. There are no other renormalization con-
stants involving different combinations of Yukawa matrices at this order. The results for these
renormalization constants are given in Table 1.

QLR
phys[B]

(qL,uR),(qL,dR), QLR
phys[W ]

(qL,uR),(qL,dR), QLR
phys[G]

(qL,uR),

(`L,eR),(`L,νR) (`L,eR),(`L,νR) (qL,dR)

(ZB
Y )

(1)
1

3
4 QY

ϕQY
ϕ(Q

Y
L +QY

R) (ZW
Y )

(1)
1

1
8 QL

φ
QY

ϕ(Q
Y
L +QY

R) (ZG
Y )

(1)
1 0

(ZB
L )

(1)
1

3
16 QY

ϕQL
φ

QL
L (ZW

L )
(1)
1

3
32 QL

φ
QL

φ
QL

L (ZG
L )

(1)
1 0

(ZB
c )

(1)
1 0 (ZW

c )
(1)
1 0 (ZG

c )
(1)
1 0

(ZB
λ
)
(1)
1 0 (ZW

λ
)
(1)
1 0 (ZG

λ
)
(1)
1 0

(ZB
y,y)

(1)
1

1
16(5QY

L +QY
R) (ZW

y,y)
(1)
1

1
32 QL

L (ZG
y,y)

(1)
1

3
8

(ZB
Y,y)

(1)
1 0 (ZW

Y,y)
(1)
1 0 (ZG

Y,y)
(1)
1 0

(ZB
Y,Y )

(1)
1

1
16(Q

Y
L +5QY

R) (ZW
Y,Y )

(1)
1

1
96 QL

L (ZG
Y,Y )

(1)
1

3
8

(ZB
det2

)
(1)
1 0 (ZW

det2
)
(1)
1 0 (ZG

det2
)
(1)
1 0

Table 1: Values are multiplied by 1
64π3 . Above, the dipole operators are QLR

phys[B] = gY Bµν(ψ̄Lσ µν ξRϕ),
QLR

phys[W ] = gLW I
µν(ψ̄Lσ µν τ IξRϕ), QLR

phys[G] = gcGa
µν(ψ̄Lσ µν T aξRϕ), with (ψL,ξR) indicated above, and τ I

(T a) designating Pauli (Gell-Mann) matrices; ϕ → φ (ϕ → φ̃ ) for operators involving down-type (respec.,
up-type) RH fields. Here: QL

L = QL
φ
= 1, QY

φ
=−QY

φ̃
= 1/2.

4. Phenomenology

Solving Eq. (3.2) at the lowest order we have

C f g
gψX (µ) =C f g

gψX (Λ)−2× `n
(

Λ2

µ2

)
×

[
C f g

ψH(Λ)×

(
g2

Y
4π

(ZX
Y )

(1)
1 +

g2
L

4π
(ZX

L )
(1)
1

)]
+ . . . (4.1)
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where we omit terms not generated at two-loops and proportional to Yukawas, the ellipses denote
further sub-leading terms, and µ is another (lower) energy scale where the same physical (Warsaw)
basis is suitable. The Wilson coefficient CgψX(Λ) is calculated from the finite part of the two-
loop Green’s functions involving two fermions, one gauge boson, and one scalar fields. Since no
logarithm involving the NP scale is present in CgψX(Λ), it will count as a sub-leading correction
in the counting [coupling2/(4π)]m × [`n

(
Λ2/µ2

)
]n, which for the term proportional to Ci j

ψH in
Eq. (4.1) starts at m = 1,n = 1. The calculation of CgψX(Λ) is beyond the scope of this work.

The Lagrangian describing the vertex eαeβ γ is

L =
ev√

2
C βα

eγ ēβ σ
µνPReαFµν +h.c. (4.2)

where Ceγ = CgeB−CgeW , Cdγ = CgdB−CgdW , Cνγ = CgνB +CgνW , and Cuγ = CguB +CguW (note
that the dipole operators are defined with an overall coupling), see e.g. [12].2 Hereafter, we dis-
cuss some phenomenological bounds on the Wilson coefficients of ψ2H3, while a more complete
phenomenological analysis, including heavy quark transitions, will be discussed in Ref. [11]. For
clarity, we first omit important finite contributions (namely, Barr-Zee diagrams), but come back to
this point in Section 5.

Higgs couplings. The Lagrangian for Yukawa couplings and fermion mass terms is

L =−ūMuu−hūYuu+ . . . , Yψ =
1
vT

Mψ(1+ cH,kin)−
v2
√

2
C†

ψH (4.3)

where ψ = u,d,e,ν , the expressions of cH,kin = O(Λ−2) and vT ' v are given at [3], the mass
matrix Mψ is real, and C†

ψH possibly introduces new CP violating phases and flavor changing
neutral couplings. When considering the unitary transformations uL → VuuL, νL → UννL, dL →
VddL, eL →UeeL, to move to mass eigenstates, the flavor changing Higgs couplings are given by
L 3 v2

√
2
hūβC̃βα

uH uα + . . ., where we have defined C̃uH = V †
u CuH , etc.; phenomenological bounds

will directly probe C̃uH , etc. We consider the leading logarithmic contributions only: in this case,
Cξ H(µ) ∼ Cξ H(Λ), where µ ∼ MH . The experimental constraints on Lepton Flavor Violating
(LFV) decays then lead to the following bounds

B(h→ eµ)< 6.1×10−5 (95% CL) [13]⇒
√
|C̃eµ

eH |2 + |C̃
µe
eH |2 < 5.2×10−3 TeV−2

B(h→ eτ)< 4.7×10−3 (95% CL) [14]⇒
√
|C̃eτ

eH |2 + |C̃τe
eH |2 < 4.6×10−2 TeV−2

B(h→ µτ)< 2.8×10−3 (95% CL) [14]⇒
√
|C̃µτ

eH |2 + |C̃
τµ

eH |2 < 3.6×10−2 TeV−2

When setting the bounds above, we have considered ΓSM = 4.1 MeV [15], while the experimental
bound on the total decay width is Γ < 0.013 GeV (95% CL) [16]. Individually, the partial decay
widths of the LFV decays above are below ∼ 0.02 MeV.

Radiative decays of charged leptons. The Lagrangian in Eq. (4.2) leads to the following
branching ratio for the radiative transition eg→ e f γ

2Tree-level physical amplitudes of a fermion to a massless gauge boson and a fermion are only introduced by dipole
operators among the set of dimension-six operators of the Warsaw basis.
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B(eg→ e f γ) = α
m3

g

Γg

v2

2
(|C g f

eγ |2 + |C f g
eγ |2) (4.4)

where C f g
eγ (µ) is calculated from Eq. (4.1), and contributions proportional to Yukawas are negligi-

ble. The bounds from charged lepton radiative decays are the following

B(µ → eγ)< 4.2×10−13 (90% CL) [17]⇒
√
|C̃eµ

eH(Λ)|2 + |C̃
µe
eH(Λ)|2 . 9×10−5 TeV−2 = 0.1×

√
2memµ

v3

B(τ → eγ)< 3.3×10−8 (90% CL) [18]⇒
√
|C̃eτ

eH(Λ)|2 + |C̃τe
eH(Λ)|2 . 1 TeV−2

B(τ → µγ)< 4.4×10−8 (90% CL) [18]⇒
√
|C̃µτ

eH (Λ)|2 + |C̃
τµ

eH (Λ)|2 . 1 TeV−2

Compared to the bounds derived from LFV Higgs decays, the one from B(µ → eγ) is better by
a factor ∼ 60, while the other two are worse by a factor ∼ 20− 30. For these estimates, we take
µ at MH , though the bound on Ceγ applies for µ ∼ mµ : an improvement consists in adopting new
effective theories valid at energies (much) below MH , cf. e.g. [19], and therefore the bounds shown
here carry some extra uncertainties. Similar comments apply for the bounds shown below.

Anomalous Magnetic Moments (AMMs) of charged leptons. The Lagrangian describing
the AMM of a fermion ψ is the following

LAMM =− e
4mψ

aψ ψ̄σ
µν

ψFµν (4.5)

The NP interactions in Eq. (4.2) lead to the correction ∆aψ =−(4mψv)/
√

2×Re[C ψψ

eγ ] to the SM
contribution. The resulting bounds are the following

∆ae = aexp
e −aSM

e =−0.88(0.36)×10−12 [20]⇒ 0.06 TeV−2 . Re[C̃ee
eH(Λ)]. 0.6 TeV−2 @ 2σ

∆aµ = aexp
µ −aSM

µ = 268(63)(43)×10−11 [21]⇒−7 TeV−2 . Re[C̃µµ

eH (Λ)].−2 TeV−2 @ 2σ

while the AMM of the tau remains largely unconstrained, [21, 22]. Having the values for Re[C̃ee
eH ]

(Re[C̃µµ

eH ]) over these ranges translates into mass scales orders of magnitude above the value of me

(respec., mµ ); in other words, explaining the values of ∆ae and ∆aµ with NP in ψ2H3 would require
a tuned cancellation among values of the Yukawas introduced by the operators ψ2H and ψ2H3.

EDMs of charged leptons. The EDM of a fermion ψ is described by the Lagrangian

LEDM =− i
2

dψ ψ̄σ
µν

γ5ψFµν ,
dψ

e
=− 2v√

2
Im[C ψψ

eγ ] (4.6)

The experimental bounds are the following

|de|/e < 1.1×10−29 cm (90% CL) [23]⇒ |Im[C̃ee
eH(Λ)]|. 2×10−7 TeV−2 = 0.004×

√
2me
v3

while the bound for muons [24] and taus [25] translate into NP scales below the EW scale, and thus
their treatment based on SMEFT is not meaningful.3

nEDM. For the neutron, we have that dN ∼ 1
3(4dd − du), following from the use of SU(6) quark

model in the non-relativistic approximation, see for example [27]. Given Eq. (4.2), we are led to

|dN |< 3.0×10−26 ecm (90% CL) [28]⇒
∣∣Im[C̃dd

dH(Λ)]+1.3× Im[C̃uu
uH(Λ)]

∣∣. 4×10−3 TeV−2 ∼ 9×
√

2md
v3

3For taus, the weak Dipole Moment Ref. [26] could lead to a slightly better, though not yet meaningful, bound.
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5. Discussion and conclusions

We have discussed how operators of the class ψ2H3 can be probed indirectly by their mixing-
induced contributions to dipole operators, resulting in a broad set of phenomenogical applications
involving both lepton and quark sectors. The leading order mixing of ψ2H3 operators into dipoles
at two-loops calculated here leads to important bounds on the Wilson coefficient of ψ2H3 derived
from B(µ → eγ), eEDM, and nEDM, thus showing the power of dipoles in probing the flavor
structure of NP, including the one encoded in non-dipole operators. An improvement of the analysis
shown above consists in including contributions from Barr-Zee diagrams, i.e., finite contributions
from two-loop insertions of the NP operator ψ2H3 [5, 29, 30], that turn out to be important. When
included, the bounds shown previously get improved by a factor of ∼ 2− 5. This feature results
from the fact that the ADM elements calculated here, i.e., γX ∼ 1/4, are not large. The dimension-
six operators ψ2H3 are generated in many extensions of the SM involving new heavy degrees of
freedom, cf., e.g., [31, 5], that can be therefore constrained by the bounds discussed previously.

In much a similar way, the study presented above can be extended to the mixing of four-
fermion operators into dipole operators. At one-loop, ( ¯̀jσµνe)ε jk(q̄kσ µνu) is the single operator
of the Warsaw basis that mixes (“directly”) into dipole operators. At two-loops, a much larger set
leads to mixing-induced contributions to dipole processes. It is worth stressing that such contri-
butions can be Yukawa and/or color enhanced. The set of renormalization constants describing
the mixing of the whole set of physical four-fermion operators into dipoles, together with their
phenomenological analysis, will be presented in [11].
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