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We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution to the
anomalous magnetic moments of the electron, aHVP

e , the muon, aHVP
µ , and the tau, aHVP

τ , including
both the isospin-symmetric QCD term and the leading-order strong and electromagnetic isospin-
breaking corrections. Moreover, the contribution to aHVP

µ not covered by the MUonE experimen,
aHVP

MUonE , is provided. We get aHVP
e = 185.8 (4.2) · 10−14, aHVP

µ = 692.1 (16.3) · 10−10, aHVP
τ =

335.9 (6.9) ·10−8 and aHVP
MUonE = 91.6 (2.0) ·10−10. Our results are obtained in the quenched-QED

approximation using the QCD gauge configurations generated by the European (now Extended)
Twisted Mass Collaboration (ETMC) with N f = 2+ 1+ 1 dynamical quarks, at three values of
the lattice spacing varying from 0.089 to 0.062 fm, at several values of the lattice spatial size
(L' 1.8÷3.5 fm) and with pion masses in the range between ' 220 and ' 490 MeV.
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1. Introduction

QCD simulations on the lattice represent nowadays the most promising tool for an accurate
determination of the hadronic contributions to various electroweak observables directly from first
principles. Here we consider the case of the anomalous magnetic moments of the three charged
leptons of the Standard Model (SM): electron, ae, muon, aµ , and tau, aτ .

Both ae and aµ have been determined precisely from experiments:

aexp
e = 1 159 652 180.73 (0.28) ·10−12 [0.24 ppb] [1] , (1.1)

aexp
µ = 1 165 920 9.1 (6.3) ·10−10 [0.54 ppm] [2] , (1.2)

while the short lifetime of the tau (' 2.9 · 10−13 s) makes quite difficult a precise experimental
determination of aτ .

Within the SM the lepton anomalous magnetic moment is given by the sum of three terms,
representing the QED, the hadronic and the weak contributions. Taking the updated (five loops)
QED contribution from Ref. [3] and the estimates of the hadronic and weak terms from Ref. [4] in
the case of the electron and from Ref. [5] in the case of the muon, one finds the following deviations
(anomalies) from the SM expectations:

aexp
e −aSM

e = −1.30 (0.77) ·10−12 [1.7σ ] [3] , (1.3)

aexp
µ −aSM

µ = +26.1 (7.9) ·10−10 [3.3σ ] [5] . (1.4)

Recently a new determination of the fine structure constant αem from atomic caesium [6] leads to a
more precise value of the electron anomaly

aexp
e −aSM

e =−0.88 (0.36) ·10−12 [2.4σ ] [6] . (1.5)

Notice the opposite signs of the electron and muon anomalies [7].
The main sources of the uncertainty for the anomalies are the experiment and the QED calcu-

lation for ae, while they are the experiment and the hadronic contribution for aµ . New experiments
at Fermilab (E989) [8] and J-PARC (E34) [9] aim at a fourfold reduction of the experimental un-
certainty for the muon and important improvements in the precision are expected to come from the
Harvard group for the electron. On the theoretical side a significative reduction of the uncertainty
is required for the QED contribution to ae and for the HVP and light-by-light contributions to aµ .

Nowadays the most accurate predictions for the HVP contribution to the muon, aHVP
µ , come

from the use of dispersion relations, which relate the HVP function to the experimental cross sec-
tion data for e+e− annihilation into hadrons (see Ref. [5] and therein quoted). In recent years lattice
QCD calculations of aHVP

µ (see Refs. [10,11] for recent reviews) have made an impressive progress
and they can provide a completely independent cross-check from first principles.

In this contribution we present our lattice determinations of the HVP contribution to the lepton
anomalous magnetic moment aHVP

` for ` = e,µ,τ , using the QCD gauge configurations generated
by ETMC with N f = 2+ 1+ 1 dynamical quarks, at three values of the lattice spacing varying
from 0.089 to 0.062 fm, at several values of the lattice spatial size (L ' 1.8÷ 3.5 fm) and with
pion masses in the range between ' 220 and ' 490 MeV. Details concerning the 17 ETMC gauge
ensembles can be found in Table 1 of Ref. [12].
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The hadronic quantities aHVP
` are calculated including both the leading order (LO) generated by

QCD effects in the isospin symmetric limit, contributing to order O(α2
em), and the next-to-leading

order (NLO) corresponding to electromagnetic (em) and strong isospin-breaking (IB) corrections,
which contribute to orders O(α3

em) and O(α2
em(md −mu)/ΛQCD), respectively. The lattice calcu-

lation of the IB corrections is performed within the RM123 approach [13, 14], which consists in
the expansion of the path integral in powers of the u- and d-quark mass difference (md −mu) and
of the em coupling αem. The quenched-QED (qQED) approximation, which treats the dynamical
quarks as electrically neutral particles, is adopted and quark-disconnected contractions are not yet
included because of the large statistical fluctuations of the corresponding signals.

2. The HVP contribution to the lepton anomalous magnetic moment

The HVP contribution aHVP
` to the lepton anomalous magnetic moment can be calculated by

adopting the time-momentum representation [15]

aHVP
` = 4α

2
em

∫
∞

0
dt K`(t)V (t) , (2.1)

where the kernel function K`(t) is given by

K`(t) =
4

m2
`

∫
∞

0
dω

1√
4+ω2

(√
4+ω2−ω√
4+ω2 +ω

)2[
cos(ωm`t)−1

ω2 +
1
2

m2
`t

2
]

(2.2)

with m` being the lepton mass. In Eq. (2.1) the quantity V (t) is the vector current-current Euclidean
correlator defined as

V (t)≡−1
3 ∑

i=1,2,3

∫
d~x 〈Ji(~x, t)Ji(0)〉 , (2.3)

where
Jµ(x)≡ ∑

f=u,d,s,c,...
J f

µ(x) = ∑
f=u,d,s,c,...

q f ψ f (x)γµψ f (x) (2.4)

is the em current with q f being the electric charge of the quark with flavor f in units of the electron
charge e, while 〈...〉 means the average of the T -product over gluon and quark fields. We consider
only the quark-connected HVP contributions, so that each quark flavor f contributes separately.

According to the RM123 method, for each quark flavor f the vector correlator Vf (t) is ex-
panded into the sum of a lowest-order contribution V LO

f (t), evaluated in isospin-symmetric QCD
(i.e. mu = md and αem = 0), and of a correction V NLO

f (t), computed to leading order in the small
parameters (md−mu)/ΛQCD and αem. The separation between the isosymmetric QCD and the IB
contributions is performed following the Gasser-Rusetsky-Scimemi (GRS) prescription [16]. Thus,
aHVP
` is given by the sum of six terms

aHVP
` = aHVP,LO

` (ud)+aHVP,LO
` (s)+aHVP,LO

` (c)

+ aHVP,NLO
` (ud)+aHVP,NLO

` (s)+aHVP,NLO
` (c) , (2.5)

where the contribution of the heavier b-quark is known to be negligible with respect to the current
level of the uncertainties.
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In the case of the muon the strange and charm contributions aHVP,LO
µ (s) and aHVP,LO

µ (c) have
been determined in Ref. [17], the light-quark contribution aHVP,LO

µ (ud) in Ref. [12] and the three
IB corrections aHVP,NLO

µ (ud), aHVP,NLO
µ (s) and aHVP,NLO

µ (c) in Ref. [18], where a non-perturbative
determination of the QED corrections to the relevant renormalization constants is also included.

For the electron and the tau each of the six contributions are evaluated in the same way as the
corresponding term for the muon, but using the appropriate kernel K`(t). The extrapolation to the
physical pion point and the continuum and infinite volume limits are performed using the same
fitting formulas adopted in Refs. [12, 17, 18].

We do not provide here the details of the analysis for the electron and the tau. We limit our-
selves to mention that the corrections due to finite volume effects (FVEs) are important in the case
of the light-quark LO contribution aHVP,LO

` (ud), which in turn dominates aHVP
` . In Ref. [12] an ana-

lytic representation of the light-quark vector correlator V LO
ud (t), based on quark-hadron duality [19]

at small time distances and on the two-pion finite-volume energy spectrum [20,21] at intermediate
and large time distances, was successfully applied to the lattice data, allowing a direct lattice esti-
mate of FVEs. It turned out that FVEs are quite important and much larger than the prediction of
Chiral Perturbation Theory (ChPT) at NLO (see Fig. 19 of Ref. [12] and also Table 1 of Ref. [22]
for the case of the muon). Indeed, FVEs corresponding to NLO ChPT are known to ignore the
interaction among the two pions [23].

An important finding of the analysis of Ref. [12] is that the “dual + ππ” representation of
V LO

ud (t) can be extrapolated to the physical pion mass and to the continuum and infinite volume
limits. Therefore, an independent determination of aHVP,LO

µ (ud) at the physical point was obtained
and shown to agree nicely with the direct chiral extrapolation of the lattice data. The same holds
as well in the case of aHVP,LO

e (ud) and aHVP,LO
τ (ud). Thus, within the current level of precision our

determination of aHVP,LO
` (ud) do not suffer from the lack of simulations at the physical pion mass.

More important than that is to avoid the use of NLO ChPT for correcting the FVEs.
Before closing this section we mention that the MUonE experiment [24] aims at determining

aHVP
µ by measuring the running of αem(q2) for space-like values of the squared four-momentum

transfer q2 using a muon beam on a fixed electron target. There is, however, a kinematical region
not covered by the MUonE experiment and the corresponding contribution to aHVP

µ needs to be
estimated using either e+e− data or lattice QCD simulations. The contribution to aHVP

µ not covered
by the MUonE experiment, which will be referred to as aHVP

MUonE , is given by Eq. (2.1) with the
kernel K`=µ(t) replaced by

KMUonE(t) =
4

m2
µ

∫
∞

ω

dω
1√

4+ω2

(√
4+ω2−ω√
4+ω2 +ω

)2[
cos(ωmµt)−1

ω2 +
1
2

m2
µt2
]
, (2.6)

where ω = 0.93/
√

1−0.93' 3.5.
In what follows the four quantitites aHVP,LO

` (ud) with `= {e,µ,τ,MUonE} will be evaluated
using the “dual + ππ” representation [V LO

ud (t)]phys extrapolated directly to the physical point.
In the case of the LO light-quark contribution the time behavior of the normalized integrands

of Eq. (2.1) , namely

N`(t)≡ K`(t) ·
[
V LO

ud (t)
]phys

/∫ ∞

0
dtK`(t) ·

[
V LO

ud (t)
]phys

, `= {e,µ,τ,MUonE} (2.7)
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is shown in Fig. 1, which illustrates the relative weights of the various regions of time distances t
contributing to aHVP,LO

` (ud) for the different leptons, since by definition
∫

∞

0 dtN`(t) = 1.

10-2

10-1

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

electron

muon

tau

MUonE

N l(t
) 

  (
fm

-1
)

t   (fm)

M
π
 = 135 MeV

normalized integrands

dual + π π representation

tau

electron

muon

MUonE

Figure 1: Time behavior of the normalized integrands N`(t), given by Eq. (2.7), for `= {e,µ,τ,MUonE}.

3. Results for aHV P
e,µ,τ and aHV P

MUonE

The results obtained at the physical point for each of the six terms appearing in Eq. (2.5) are
shown in Tables 1 and 2 together with their sum over the four flavors considered. The uncertainties
represent the sum in quadrature of various sources of errors, namely statistical, fitting procedure,
input parameters, discretization, FVEs and chiral extrapolation (see for details Ref. [12]). In Table 2
an estimate of the error due to the qQED approximation is also included [18].

f aHVP,LO
e ( f ) ·1014 aHVP,LO

µ ( f ) ·1010 aHVP,LO
τ ( f ) ·108 aHVP,LO

MUonE ( f ) ·1010

ud 170.7 (3.9) 629.1 (13.7) 273.3 (6.6) 81.2 (1.7)

s 13.5 (0.8) 53.1 (2.5) 36.2 (1.1) 8.3 (0.4)

c 3.5 (0.2) 14.75 (0.56) 25.8 (0.8) 2.8 (0.1)

udsc 187.7 (4.0) 697.0 (13.9) 335.3 (6.7) 92.3 (1.7)

Table 1: Results for the (connected) LO terms aHVP,LO
` ( f ) corresponding to the various flavors f = {ud,s,c}

and leptons ` = {e,µ,τ,MUonE}. For the light-quark contributions the “dual + ππ” representation
[V LO

ud (t)]phys extrapolated to the physical point is adopted. The values of aHVP,LO
MUonE (s) and aHVP,LO

MUonE (c) have
been determined in Ref. [25]. The last row contains the sum over the four flavors considered.

In Ref. [12], in the case of the muon, we estimated the contribution of the quark disconnected
diagrams to be equal to aHVP

µ (disconn.) =−12 (4) ·10−10, obtained using the findings of Refs. [26,

4
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f aHVP,NLO
e ( f ) ·1014 aHVP,NLO

µ ( f ) ·1010 aHVP,NLO
τ ( f ) ·108 aHVP,NLO

MUonE ( f ) ·1010

ud 1.9 (0.8) 7.1 (2.5) 3.0 (1.1) 0.9 (0.3)

s -0.002 (0.001) -0.0053 (0.0033) 0.001 (0.002) -0.0005 (0.0004)

c 0.004 (0.001) 0.0182 (0.0036) 0.032 (0.006) 0.0034 (0.0007)

udsc 1.9 (1.0) 7.1 (2.9) 3.0 (1.3) 0.9 (0.3)

Table 2: The same as in Table 1, but for the NLO terms aHVP,NLO
` ( f ) corresponding to strong and em IB

effects. The values in the last column have been determined in Ref. [25]. In the last row the uncertainties
include also an estimate of the error due to the qQED approximation [18].

27]. In the case of the electron and the tau we adopt directly the findings of Ref. [26], namely
aHVP

e (disconn.)=−3.8 (0.4) ·10−14 and aHVP
τ (disconn.)=−2.4 (0.3) ·10−8. For MuonE we adopt

the following strategy. First, we consider the ratio of disconnected over connected contributions in
the case of the muon, namely −12(4)/697.0(13.9) =−0.0172 (57). Then, the same value of the
ratio is assumed to hold as well for MUonE, implying that aHVP

MUonE(disconn.) =−1.6 (0.5) ·10−10.
For conservative purposes we double the uncertainty of the above estimates of the disconnected

diagrams. Adding all the various contributions we get

aHVP
e = 185.8 (4.2) ·10−14 , (3.1)

aHVP
µ = 692.1 (16.3) ·10−10 , (3.2)

aHVP
τ = 335.9 (6.9) ·10−8 , (3.3)

aHVP
MUonE = 91.6 (2.0) ·10−10 , (3.4)

where the muon result (3.2) represents an update of the corresponding ETMC result of Ref. [12].
Our results (3.1)-(3.3) can be compared with the corresponding ones from the BMW Collabo-

ration [26]: aHVP
e = 189.3 (6.2) ·10−14, aHVP

µ = 711.1 (18.9) ·10−10 and aHVP
τ = 341.0 (3.3) ·10−8.

They remarkably agree well with the more precise determinations based on the dispersive analyses
of the experimental cross section data for e+e− annihilation into hadrons: aHVP

e = 184.90 (1.08) ·
10−14 [4], aHVP

µ = 693.9 (4.0) ·10−10 [5] and aHVP
τ = 337.5 (3.7) ·10−8 [28]

Notice that the uncertainty of our result (3.4) is almost coinciding with the statistical uncer-
tainty (∼ 2 · 10−10) expected in the MUonE experiment for the measured contribution [aHVP

µ −
aHVP

MUonE ] after two years of data taking at the CERN North Area [24].
Before closing this Section we take advantage of the well known fact that aHVP

e is propor-
tional to the slope Π1 of the leading HVP function at vanishing photon virtuality, namely aHVP

e =

(4/3)α2
emm2

eΠ1 with Π1 ≡ (1/12)
∫

∞

0 dt t4V (t). Our result (3.1) corresponds to

Π1 = 0.1002 (23) GeV−2 , (3.5)

which agrees nicely with the recent results Π1 = 0.1000 (30) GeV−2 and Π1 = 0.1000 (23) GeV−2,
obtained by the BMW and FNAL/HPQCD/MILC Collaborations in Refs. [29, 30], respectively.
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