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1. Introduction

The ’t Hooft limit of QCD [1], that is the limit of infinite number of colors, Nc, constitutes a
simplification of the theory of the strong interactions that preserves most of its non-trivial proper-
ties, such as confinement or spontaneous chiral symmetry breaking. The large Nc limit of QCD is
a powerful approximation. For instance, it has been able to predict the hierarchy of the low energy
constants (LECs) of the chiral Lagrangian. Therefore, many other phenomenological approaches
to QCD often use approximations inspired by the large Nc limit. Still, there are some exceptions
where large Nc fails. The most striking being the ratio of isospin amplitudes in the K→ (ππ)I weak
decay, in which the two pions can be in an isoscalar (I = 0) or isotensor (I = 2) final state. This
ratio, A0/A2, is measured to be ∼ 22, although large Nc predicts it to be

√
2. This is the so-called

“∆I = 1/2 puzzle”, whose solution remains elusive.
Lattice Field Theory (LFT) offers the possibility of ab initio explorations of generic gauge

theories, with arbitrary numbers of colours and flavours — see Ref. [2] for a review and Refs.
[3, 4] for benchmark calculations. In this context, simulating QCD at a different values of Nc has a
considerable amount of yet unexplored potential. In particular, the study of the Nc-scaling of QCD
observables can help to improve phenomenological predictions. An illustrative example can be
found in Ref. [5], where the systematic error induced by the large Nc limit completely dominates
the total uncertainty. In addition, a nonpertubative study of the Nc-scaling of kaon decay amplitudes
may reveal hidden features of QCD at the origin of the ∆I = 1/2 rule. 1

Our project consists in the computation of physical observables at different values of Nc [9, 10,
11]. Specifically, we are currently focusing on meson masses and decay constants, kaon decays and
meson-meson scattering. In this talk, we aim at summarizing the current status of the project and
present several results — some of which are preliminary — for the aforementioned observables.

2. Simulations at large Nc

We are using configurations with N f = 4 and Nc = 3−6 generated with HiRep [12]. We use
the Iwasaki gauge action, and O(a)-improved Wilson fermions. A summary of the values of the
simulation parameters can be found in Ref. [11]. We use the gradient flow scale t0 (see Ref. [13])
for the scale setting [10, 11]. This way, the lattice spacing is kept constant across all values of Nc,
and it is a∼ 0.075 fm. Furthermore, we use a mixed-action setup, that is, twisted mass fermions at
maximal twist in the valence sector. This has several advantages:

(i) The computation of the meson decay constant requires no renormalization constant. It can
be obtained from the bare pseudoscalar correlation function and the value of the bare twisted
mass µ0, via the PCAC relation:

C(t) = 〈P(t)P(0)〉 T�t�1−−−−−−−→ |〈0|P|π〉0 |2e−Mπ t , Fπ =
2µ0 〈0|P|π〉0

M2
π

. (2.1)

(ii) The evaluation of weak matrix elements using twisted mass fermions at maximal twist helps
alleviating renormalization problems, e.g., mixing with wrong-chirality operators (see Ref.
[14]).

1Lattice QCD attemps have observed the experimental enhancement although with large error bars [6, 7, 8].
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(iii) Several observables of interest with twisted mass in the valence sector show smaller statistical
fluctuations. In addition, the twisted mass formulation prevents the appearance of linear
cutoff effects in Fπ and in the weak matrix elements.

3. Large Nc scaling of meson masses and decay constants

The computation of the large Nc scaling of meson masses and decay constants was recently
published in Ref. [11]. In this section, we aim to summarize the approach and highlight some
relevant results. We start by pointing out that the chiral perturbation theory (ChPT) description of
pseudoscalar mesons is valid for an arbitrary number of colors 2. The prediction of next-to-leading
order (NLO) ChPT with N f degenerate flavours for the non-singlet meson mass and decay constant
are [15]:

Fπ = F

[
1− N f

2
M2

π

(4πFπ)2 log
M2

π

µ2 +4
M2

π

F2
π

(
Lr

5 +N f Lr
4

)]
, (3.1)

M2
π = 2Bm

[
1+

1
N f

M2
π

(4πFπ)2 log
M2

π

µ2 +8
M2

π

F2
π

(
N f (2Lr

6−Lr
4)+2Lr

8−Lr
5

)]
, (3.2)

in terms of the leading order (LO) couplings, B,F , and the NLO Gasser-Leutwyler coefficients,
Lr

4,5,6,8(µ), defined at the renormalization scale µ . Even though there is no explicit Nc dependence
in Eqs. (3.1-3.2), the LECs scale with Nc as:

O(Nc) : F2,L5,L8; O(1) : B,L4,L6. (3.3)

Loop corrections are suppressed in 1/F2
π = O(1/Nc), and hence the loop expansion is expected to

converge better at larger Nc. Keeping only leading and subleading dependence on Nc for the LECs,
convenient parametrizations are:

F =
√

Nc

(
F0 +

F1

Nc

)
, B = B0 +

B1

Nc
, (3.4)

L5 +N f L4 ≡ LF = NcL(0)
F +L(1)

F , 2L8−L5 +N f (2L6−L4)≡ LM = NcL(0)
M +L(1)

M . (3.5)

Note that according to the scaling of Eq. (3.3) and the definition of Eq. (3.5):

L(0)
F =

L5

Nc
+O

(
1

Nc

)
, L(0)

M =
2L8−L5

Nc
+O

(
1

Nc

)
. (3.6)

We have performed fits to the expressions in Eqs. (3.2) and (3.1) at fixed values of Nc. The results
are presented in Fig. 1. As can be seen, Eqs. (3.4) and (3.5) seem to describe the scaling properly,
with the exception of the decay constant at Nc = 3, where subleading effects seem larger.

Once we have checked the ansätze from Eqs. (3.4) and (3.5,) it is better to perform a simulta-
neous chiral and Nc fit. In this fit, the number of parameters is small in comparison to the number
of degrees of freedom. For the decay constant, this yields:

F√
Nc

=

(
67(3)−26(4)

N f

Nc

)
(3%)a MeV,

LF(µ)

Nc
·103 = 0.1(4)+0.6(3)

N f

Nc
, (3.7)

2Two-coloured QCD is the exception as mesons and baryons have the same quark content, see Ref. [16] for recent
calculations in this theory.
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(a) Meson decay constant LECs
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(b) Meson mass LECs

Figure 1: Nc-scaling of the LECs of the chiral Lagrangian with the number of colors for the non-singlet
pseudoscalar meson decay constant (left) and mass (right).

with a 3% of scale setting error, and where we have assumed the N f dependence, as argued in Ref.
[11]. From the previous fit results, we can infer results for QCD with N f = 3:

FNc=3,N f =3 = 71(3) MeV , LNc=3,N f =3
M = 2.1(3) ·10−3, (3.8)

which are in agreement with other phenomenological and lattice determinations — See Ref. [17]
for a summary of current results.

We conclude this section by mentioning that in the large Nc limit, the flavour singlet (η ′)
becomes a Goldstone boson. Thus, one should also repeat the analysis using U(N f ) ChPT. We
refer the reader to our publication for more details [11]. In addition, the mass and decay constants
of the flavour singlet are currently under exploration.

4. I=2 ππ scattering in the large Nc limit

As mentioned above, the large Nc limit preserves quark confinement and chiral symmetry
breaking. However, the interactions between mesons become weaker as Nc increases. Thus, QCD
at large Nc is made up of infinitely narrow non-interacting resonances. The goal of this section is
the study of the least complicated two-hadron interaction in the large Nc limit: ππ scattering at
maximal isospin, I = 2.

Within lattice QCD, the study of two-particle interactions is perfomed using the Lüscher
method [18]. It is an indirect way of obtaining two-particle scattering amplitudes from the spec-
trum of a theory in finite volume. In its simplest form, the Lüscher formalism relates the s-wave
scattering length, a0, of two identical (pseudo)scalar particles to the energy shift of the two-particle
ground state in finite volume. This expression, valid only for L� a0, is called the threshold expan-
sion and takes the form:

∆E = Eππ −2Mπ =−4πa0

mL3

[
1+ c1

a0

L
+ c2

(a0

L

)2
]
+O(L−6), (4.1)

with c1,c2 numerical constants (see Ref. [18]).
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The low-energy pion interactions are in general well-described by ChPT. The leading order
prediction for the I = 2 channel is given by:

MπaI=2
0 =− M2

π

16πF2
π

+O
[

M4
π

(4πFπ)4

]
, (4.2)

and thus, by knowing that F2
π ∼O(Nc) and Mπ ∼O(1), we can easily extract the leading Nc-scaling:

Mπa0 ∝
1

Nc
+O(N−2

c ). (4.3)

The results for aI=2
0 in our 16 ensembles can be found in Fig. 2. We display our results by

multiplying both the x- and y-axis with the leading Nc dependence, so that points at different values
of Nc should lie on a universal line up to subleading 1/Nc corrections. As it can be seen, our
results show excellent agreement with leading order ChPT even at pion masses of Mπ = 560 MeV,
corresponding to the heaviest point in Fig. 2.

The NLO prediction of ChPT for this scattering channel exists and includes the NLO LECs of
the chiral Lagrangian. In a next step of our work, the data of Fig. 2 will be used to try to extract
the Nc-scaling of the LECs in a similar manner to the one explained in Section 3.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0√
Nc

3
Mπ

Fπ

−0.1

−0.3

−0.5

Nc

3 Mπa
I=2
0

LO ChPT
Nc = 3

Nc = 4

Nc = 5

Nc = 6

Physical point

Figure 2: Preliminary results on the s-wave I=2 ππ scattering length for different values of Nc. We rescale
the x- and y-axis by the leading Nc-dependence. The line indicates the prediction of leading order chiral
perturbation theory, and the black star marks the value for physical pion masses.

5. Nonleptonic kaon decays at large Nc

The study of the ∆I = 1/2 rule in the large Nc limit can be performed via an indirect method:
the study of the K→ π matrix elements in the GIM limit [9, 19]. We refer to our previous work for
technical details [9, 10]. The key point is that the ratio of isospin amplitudes in the GIM limit can
be related to leading order in ChPT to the K→ π matrix elements:

A0

A2
=

1
2
√

2

(
1+3

g−

g+

)
, 〈K|C±O±|π〉= g±, (5.1)
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where O± are the operators in the effective weak Hamiltonian, C± are the Wilson coefficients and
g± are the LECs of the chiral weak Hamiltonian.

On the lattice, the effective couplings g± can be determined via a three-point function properly
normalized:

g± ∼ R± ≡ 〈π|O
±|K〉

fK fπmKmπ

= Z±R (µ)R
±
bare , (5.2)

and the Wilson coefficients can be calculated as explained in Ref. [9].
We show our preliminary results in Fig. 3 for the dynamical ensembles of this work, together

with the quenched results of Ref. [9]. We also fit these numbers to the expected Nc dependence.
We obtain that the 1/Nc terms agree in both calculations, and that quenching effects are sizeable
and enter at O(N−2

c ). With these results, we can calculate the ratio of isospin amplitudes for Nc = 3
using Eq. (5.1):

A0

A2

∣∣∣
Nc=3,N f =4

= 6.3(3),
A0

A2

∣∣∣
Nc=3,N f =0

= 3.7(1), (5.3)

where the error is purely statistical. In addition, an extra 10−20% effect can be explained from a
contribution to NLO ChPT (See Ref. [10]). Still, a factor three remains to be explained.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
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R+ = 1− 1.39(5)/Nc + 1.3(3)/N 2
c

R+ = 1− 1.53(10)/Nc − 0.0(4)/N 2
c

R− = 1 + 1.42(7)/Nc + 2.1(5)/N 2
c

R− = 1 + 1.0(2)/Nc + 8.1(9)/N 2
c

Nf = 4 csw = 0

Nf = 0

Figure 3: K→ π matrix elements as a function of the number of colors for dynamical and quenched con-
figurations. The label csw = 0 in the legend refers to the value of csw in the valence action.

6. Conclusion and Outlook

We have presented the current status of the determination of the Nc scaling of QCD observables
from first principles. We have achieved significant progress in the computation of meson masses
and decay constant, the I = 2 ππ scattering length and K → π matrix elements. First, we have
been able to extract the leading and subleading contributions to the LECs of the chiral Lagrangian.
Second, we have seen the expected scaling in the I = 2 ππ scattering length. Finally, the study of
the K→ π matrix elements has shown that 1/N2

c effects are relevant and significantly increase the
ratio of couplings. This is related to the ∆I = 1/2 rule, and constitutes a source of enhancement.
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In future work, we intend to address the scaling of QCD resonances. In particular, I = 0
ππ scattering length represents a very interesting topic, as it couples to the sigma resonance and
it could have implications for the ∆I = 1/2 rule. Other relevant topics are the ρ resonance, the
flavour singlet meson and the existence of tetraquarks in the large Nc limit.
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