The Belle II experiment at the SuperKEKB energy-asymmetric $e^+ e^-$ collider is a substantial upgrade of the B factory facility at the Japanese KEK laboratory. The design luminosity of the machine is $8\times 10^{35}$ cm$^{-2}$s$^{-1}$ and the Belle II experiment aims to record 50 ab$^{-1}$ of data, a factor of 50 more than its predecessor. With this data set, Belle II will be able to measure the Cabibbo-Kobayashi-Maskawa (CKM) matrix, the matrix elements and their phases, with unprecedented precision and explore flavor physics with $B$ and charmed mesons, and $\tau$ leptons. Belle II has also a unique capability to search for low mass dark matter and low mass mediators. We also expect exciting results in quarkonium physics with Belle II. From February to July of this year, the machine has completed a commissioning run, achieved a peak luminosity of $5.5\times 10^{33}$ cm$^{-2}$s$^{-1}$, and Belle II has recorded a data sample of about 0.5 fb$^{-1}$. Regular operations are expected to start in March 2019. In this presentation, we will review the status of the Belle II detector, the results of the commissioning run and the near-term prospects for physics at Belle II.