PROCEEDINGS

OF SCIENCE

The Automatic Installation And Configuration
ProcedurE for the data acquisition system of
KM3NeT

The KM3NeT Collaboration**
¥ full author list at PoS(ICRC2019)1177
E-mail: emidio.giorgio@infn.it

The usage of tools for the automation of IT procedures has been increasingly spreading in the
last years. The advantages of this approach include the traceability and the reproducibility of the
performed steps, which implies reduced delivery times, possibility of roll-back as well as replicate
configurations. Automation also minimizes errors, as human intervention is generally limited to
the description of the general properties of the infrastructure components, like IP addresses, MAC
address and so on, while configuration commands are coded, minimizing the chance of failures. A
specialized and complex context like the data acquisition system of KM3NeT can largely benefit
from the automation of tasks, in particular the reproducibility of configuration steps that allows
to harmonize setups across different sites. This contribution describes the Automated Installation
And Configuration procedurE (ATACE) developed for the online DAQ of KM3NeT, motivating
the choices at the base of the current implementation and sketching possible evolutions.

Corresponding authors: Ronald Bruijn', Tommaso Chiarusi?, Emidio Giorgio®

U University of Amsterdam, Institute of Physics/IHEF, PO Box 94216, Amsterdam, 1090 GE The
Netherlands - Nikhef, Science Park 105, 1098XG Amsterdam, The Netherlands

2 INFN - Sezione di Bologna, V.le Berti-Pichat 6/2 40127 Bologna, Italy

3 INFN - Laboratori Nazionali del Sud, Via Santa Sofia 62 95123 Catania, Italy

36th International Cosmic Ray Conference -ICRC2019-
July 24th - August 1st, 2019
Madison, WI, U.S.A.

*for collaboration list see PoS(ICRC2019)1177
Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:emidio.giorgio@infn.it

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

1. Introduction

KM3NeT is a distributed neutrino observatory installed in the abisses of the Mediterranean
Sea. It comprises two telescopes, ARCA and ORCA, 80 km off the Sicily coast (Italy) at the
depth of 3500 m and 40 km off Toulon (France) at the depth of 2500 m, respectively [1]. Both
of them are based on a grid of thousands Digital Optical Modules (DOMs), interconnected to
shore stations via an electro-optical seafloor infrastructure. The DOMs are organized in vertical
structures, the Detection Units (DUs), each one provided with a Base-module for controlling the
power supply and optical amplification of the attached devices. Exploiting a custom FPGA-based
White Rabbit kernel with Ethernet connectivity, the DOMs and Base-modules are submarine nodes
of the global Layer 2 optical networking infrastructure [2], with two significant characteristics
that make it unique with respect to the other DAQ networking installations: the asymmetry of
the connections between the station and the detector and a custom implementation of the White
Rabbit (WR) protocol [3] for synchronizing the detector DOMs and Base-modules, which exploits
a hybrid layout of the onshore switching infrastructure. Beside shore stations, the DAQ context is,
partially or entirely, replicated also in integrations sites, where DOMs are assembled in DUs, as
well as test sites, where general functionality checks are performed. It is clear how it’s important
to have IT setups that are as much as possible each other similar, thus reducing the differences
between production and test environments and allowing to test hardware and software components
in a realistic scenario.

Off-shore On-shore Remote facilities
(shore station facility)
\
Detector:
DOM/Bases Trigger and Data Acquisition ‘
System “ Monitoring Web
(TriDAS) Servicies

Incoming

all FAD Selected

FAD

Fast Acquisition
Data - FAD

All FAD

to shore -
(Optical, Acoustic -
Monitorin:
o (CNAF
(Bologna -

RAW Italy)

. LAN
Time Sync

Data Hybrid-Asym.

P WR-Ethernet ~
White Rabbit PTP 1-10GbE]rgPG/IkIJ:E

DP/IP
(WR) U Class C
Class A CC-Lyon

(France)

Slow Control Data /

(Commands and ¢~
instrument data)

DataBase

. (Italy and
Control Unit France)

(CY)

Figure 1: Outline of KM3NeT DAQ components

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

2. KM3NeT Trigger and Data Acquisition System

A detailed, and updated description of KM3NeT TriDAS can be found in Refs [2, 4]. However,
it is worth to resume quickly its main components and their interactions. Offshore and onshore ele-
ments are connected through the RAW LAN, a specialized network which takes into account White
Rabbit Protocol requirements and related customizations [3]. Onshore elements are connected also
through another network, called CONTROL LAN as it is used to manage nodes and to reach them
from external network. The Control Unit is a suite of processes that orchestrate the off-shore De-
tector and the DAQ facilities in order to optimize data-taking and preserve Detector efficiency [8].
The Trigger and Data Acquisition System identifies the group of computing resources that manip-
ulate optical and acoustic data coming from DOMs. Filtered data is saved on local storage cache,
and on a daily basis saved remotely to Tier 1, where they are made available for offline analysis.
Besides these core DAQ components, it is worth mentioning SDN controller and monitoring. The
SDN controller is needed because of the asymmetry of DAQ connections and the hybrid switching
layout described here [3, 5]. The monitoring is a set of python scripts, exposed through a web
server, that watches over data taken, permitting a real time evaluation of detector performance and
allowing to spot, for instance, DOM failures or disruptions.

Finally, there is a node, the so called bastion-host that although not strictly playing a DAQ role it
acts as a front-end with external network for the nodes, and it is normally used to provide utility
functions, as virtual machines hypervisor or dhcp server for the control network.

3. Ansible

In the Information Technology scenario there is nowadays plenty of tools that allow software
provisioning and configuration management, like Ansible, Puppet and Chef [6] just to mention
the most widely known. A detailed comparison of such tools is out of the scope of this paper.
However, with regards to Ansible, it can be observed that the most common of its deployments
features a central node that sends commands via ssh to controlled nodes; this scenario matches
quite well the typical outline of KM3NeT DAQ, with the bastion host that can be used to inject
commands on the managed DAQ nodes.

3.1 Inventory, tasks, playbook and roles

A task is a command to be executed on a resource. Tasks are typically organized in playbooks,
that can be seen therefore as a list of steps targeting a given state or a given configuration. It
is mandatory to define one inventory file, at least. This file will contain the list of hosts that
are managed by Ansible, and the related properties, as IP address or MAC address. Properties
are expressed in terms of association {key:value}. Actually the choice of properties that can be
assigned is free, so the list of properties used to describe the infrastructure can be modeled as
needed. Properties are used by tasks to finalize hosts configuration. Hosts within an inventory
can be organized in groups: this allow to apply tasks and roles only to group of hosts, as well as
defining properties just for the subset of the hosts being managed. For instance, if we have a host
that acts both as web server and dhcpd server, can be defined two groups, web and dhcpd, with web
related properties set in the web server group, and dhcpd ones in the other. Web related tasks will

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

refer only to hosts in the web server group, and the same will do dhcpd related tasks. Tasks can
be also organized in roles, that allow to reuse the same role in different contexts, invoking it from
different playbooks. For instance, the role for software experiment installation is to be applied to
more than one host group. So, instead of writing a playbook for installing software experiment, it
is more convenient to define a role, and recall it from every playbook that needs it.

INVENTORY FILE FOR AR TATION -

arca-bastion-82 hostname=arca-bastion-82 ctl_ip= ctl_mac= vncport=

arca-cu-82 hostname=arca-cu-82 raw ip= ctl ip= ctl mac= raw_mac=
vnecport=

arca-dg-03 hostname=arca-dq-83 raw_ip= ctl_ip= ctl_mac= raw_mac=
vncport=

sdn-controller-082 hostname=sdn-controller-82 ctl ip= ctl _mac= vncport=

scsf ofid= cu_port= daq_port= scbd_uplink_port= raw_dhcp_port=

scbd ofid= scsf_link_portid= wrsb_ports=I[.]

[all:vars]

local_ntp_server=
production_site=
km3netsiteid=A00073795

[fen]

arca-bastion-02 publ_ip= publ_mac= ctl_static_ip=
dns_ext_server= os_install_server_path=
dhcpd start= vbox_hyperv= skipvmcreation=

[controll
Multiple no

[sdnctl]
sdn-controller-82 karaf_version=

dulbase raw

duldomBl ra :

duldom@z2 r: w_ip=
duldom@3 ra ip=

Figure 2: An extract from ARCA inventory: on top, catch-all zone, followed by global variables,
and then FrontEnd, Control, Daq, SDN CTL and doms group

3.2 Inventory, roles and playbook implemented for KM3NeT DAQ

These instruments have been used in the KM3NeT DAQ context to implement both installation
and configuration scenarios. For each site, the inventory contains the list of infrastructure hosts,
either physical or virtual. Since each host can play different roles (which is very common in small
sites), each host is defined in a catch-all part, where common properties of the host, like control
IP and related MAC address. Then there are groups for each logical set, like SDN controller,
Control Unit, TriDAS, DOMs and so on. These allow to identify which host belong to which
group, and apply playbooks selectively. Definition of hosts within such groups contains also the
related specific property: for instance, TriDAS nodes have a boolean property that forces manual
configuration of raw ip addresses avoiding dhcp invocation. Inventory contains definition also
of some entities not managed via Ansible, for instance DOMs, whose mac addresses are used to
configure the raw dhcpd, and SDN switches, whose definition are used for the SDN controller.

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

fhome/km3net/.local/cu/etc
Jvar/km3net/nfsshare

Create config files for CU services

km3net
km3net

create JPP write dirs

km3net
km3net
directory

(a) Some of the CU tasks, involving cre- (b) Default directory paths and binaries
ation of directory and JPP binary path ports for CU role

Figure 3: Control Unit role : tasks (a) and default values (b). Tasks defined in role can be imported
in any playbook. Some of the meta variable have default values set in a specific file

Few playbooks have been implemented, each of which aiming to the configuration of the main
actors : FrontEndNode (Bastion), ControlUnit, DAQ node, SDN controller. Instead of putting di-
rectly tasks for each playbook, roles have been defined instead, in order to facilitate re-use. For
instance, for the installation of experiment software, a dedicated role (km3_sw_env) has been writ-
ten, that configures the repository and then downloads and installs software packages. This role
is invoked both from CU and DAQ, avoiding to maintain two different set of tasks performing the
same operations in two different playbooks. Another example is the configuration of raw interface,
arole needed by all nodes that communicate offshore (DAQ and CU). Another reason to use roles is
that they naturally imply the use of templates. Although it is not mandatory, when the role implies
generation of configuration file it is very convenient to use templates, which are transformed in
real configuration files reading the inventory and replacing the template placeholder value with the
actual value for the node. It also allowed to set predefined values, while a fatal error is generated if
a placeholder can’t be expanded. A role that largely exploits this template feature is the PXE server
role. A PXE server is a service used to bootstrap nodes and kickstart the operating system installa-
tion. Therefore the server needs to know the MAC address and related IP for the nodes being the
installed. The PXE role include template files that are transformed in real PXE configuration files
reading IP and MAC address related values within the inventory file. The FrontEndNode invokes
the largest number of roles indeed. It also plays as control dhcpd server, but provides also a local
kickstart server that can be used for the nodes installation, and acts also as NAT, tunneling external
connections for the DAQ nodes. Although these duties are generally played by a single node, yet
they have been implemented as a role, and not within playbooks, because this facilitates re-usage
in other contexts: for instance it could be needed to move the dhcpd server to another host: in a
role-scenario it is enough to apply the role to the desired node, while a playbook implementation

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

fic configuration ta
- name : Configure Control Unit
hosts : # the inventory group targeted
- control
roles: # invoked roles
- km3 rawif
- km3_sw_env
- km3 cu
vars:
debug:

handlers:
- name: restart network
service: name=network state=restarted

tasks : # the following t Wi he uted after
- name: check script push c arp
stat: path=/etc/NetworkManager/dispatcher.d/11-static-arps
register: static_arps
tags: arp

- name : Create static arp
lineinfile:

create: yes
path: fetc/ethers
state: present
line:

with_items:

Figure 4: An extract from Control Unit playbook. It begins from the inventory group targeted
by the playbook, then roles invoked (raw_if, sw_env, km3_cu) and finally few specific tasks that,
differently from those defined in roles, cannot be reused

would require a deeper editing.

4. Ansible in action

This section describes the whole procedure implemented by AIACE in order to set up the
KM3NeT DAQ context. The first node being installed is the FrontEndNode (FEN). This node is
a plain CentOS 7, better if installed through kickstart in order to predefine some settings. When
the FEN is installed, AIACE scripts are downloaded from a git repository, and the first step to be
taken is the compilation of the inventory. Then the first playbook can be executed, that actually
configures the FEN. The major tasks carried out by the FEN playbook are the creation of a local
kickstart server for the other TriDAS nodes being installed, the definition of a dhpcd server for the
CONTROL network and the configuration of the interface in order to provide a gateway for the
external network.

Once that FEN configuration is completed, set up of the other nodes can follow. The procedure
is similar for all of them. If the FEN playbook has been run successfully, the node is exposing a
PXE/kickstart server, filled with entries related to the other nodes to be installed. Similarly, the
DHCP server for the CONTROL network is already setup, so it is enough to reboot the nodes
to be installed, in order to trigger the OS installations. When all the nodes are installed, they
can be configured through their respective playbooks. Although there is not a specific order, it

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

is convenient to start from the SDN controller: this playbook, differently from ControlUnit and
DAQ, does not install KM3 software, so km3_sw_env role is not linked from the sdn playbook. It is
rather invoked km3_sdn role, which downloads Karaf [7], the runtime environment upon which the
SDN controller chosen, OpenDayLight, is built. The inventory file is sourced in order to discover
the switch ports where TriDAS nodes are attached, and coherently build the SDN rules that are
eventually pushed to the controller [5]. If everything has gone fine, raw network connectivity is now
fully enabled, and only ControlUnit and TriDAS nodes are left. Two different playbooks have been
prepared for this purpose, ControlUnit and DAQ, that actually do not differ very much: they spend
both the largest part of their time executing km3_sw_env role, which performs installation and
configuration of experiment software (mainly JPP), and km3_cu role, which installs the ControlUnit
software, that so is present in CU and DAQ nodes. It is convenient to start from the ControlUnit, as
this normally carries a DHCP server for raw network, and complete with the TriDAS nodes. When
the CU software is installed, a boolean value on the inventory determines if the node has to behave
as ControlUnit for the detector, or just act as an agent for the main ControlUnit process. However, at
any time roles can be changed exploiting ControlUnit Dynamic Provisioning [8], that also provides
failover strategies in case one of the binaries in the main CU process dies unexpectedly. The last
steps performed in the role is the creation of configuration files, starting from predefined templates
and the creation of work directories for CU binaries and JPP, where detector data will be stored.

5. Next evolutions

The work here described has been used in KM3NeT production sites since January 2019,
when ARCA detector was restarted after a downtime period. In the following weeks AIACE was
used to install KM3NeT DAQ context in the Catania test site, Bologna Common Infrastructure and
Strasbourg integration site. Production usage stressed several areas for improvements. For instance,
the playbooks are all oriented to the installation and configuration of software, with directories and
configuration files continuously recreated. While this feature has been extremely useful during
detector "commissioning” (when detector whole configuration is being tuned), it became quite
uncomfortable when the detector was fully operative: at this point, reconfigure a whole stack just to
correct a package configuration was really inefficient, also because some post-configuration aspects
could be lost. This behavior was already adjusted but will be more enforced in the next versions
of AIACE, with playbooks able to reconfigure software or perform package upgrades preserving
as much as possible the existing setup. Another useful extension would be some playbook that just
perform configuration checkup without any executive action. Another change will be led by the fact
that RPM packages, current format used for the deployment of experiment software in AIACE, will
be no longer the supported format for next major releases, which will adopt container instead. This
will obviously impact the role deploying KM3NeT software, but probably also the configuration
of related nodes, with some aspects that will be embedded in the container and will then disappear,
while others, like the IP address of the node, will have to be moved on a different step. Finally,
some more component will be included: monitoring, but also the configuration of White Rabbit
and SDN switches (currently, ATACE manages just the controller installation and configuration).

Automatic Installation And Configuration ProcedurE for KM3NeT DAQ Ronald Bruijn

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

S. Adrian-Martinez et al. (KM3NeT Collaboration) Letter of Intent for ARCA and ORCA in J. Phys. G:
Nucl. Part. Phys. 43 (2016), 084001

C. Pellegrino and T. Chiarusi et al., The Trigger and Data Acquisition System for the KM3NeT neutrino
telescope in EPJ Web of Conferences 116 (2016) 05005

M. Bouwhuis, Time synchronization and time calibration in KM3NeT in proceeding of ICRC 2015
PoS (ICRC2015) 1170(2016)

T.Chiarusi and R. Brujin, KM3NeT DAQ and Trigger in proceeding of this ICRC conference

T. Chiarusi, L. Chiarelli, E. Giorgio, S. Zani, S. Celli and on behalf of the KM3NeT Collaboration, The
Software Defined Networks implementation for the KM3NeT networking infrastructure, in proceeding
of ICRC 2017 PoS (ICRC2017) 940(2018)

Ansible Home, Chef Home, Puppet Home
Karaf Home

C. Bozza, T, Chiarusi The Control Unit of KM3NeT detectors, in proceedings of this ICRC conference

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ICRC2015)1170
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ICRC2017)940
http://www.ansible.com
http://www.chef.io
https://puppet.com
https://karaf.apache.org/

