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36th International Cosmic Ray Conference -ICRC2019- 

July 24th - August 1st, 2019 

Madison, WI, U.S.A. 

 

ALPACA (Andes Large area PArticle detector for Cosmic-ray physics and Astronomy) 

experiment is a collaboration project between Bolivia and Japan. It is going to be located 

at the Mt.Chacaltaya plateau (16° 23′ S, 68° 08′ W) in Bolivia, at high altitude of 4,740 m 

(572.4 g/cm2 ). As the prototype experiment of ALPACA, ALPAQUITA experiment is 

going to start in 2019. We evaluate the performance of ALPAQUITA with an MC 

simulation and give as results the detection efficiency of the ALPAQUITA AS array and 

the difference of muon distribution of gamma-ray induced air showers and cosmic-ray 

induced ones. The calculation of the sensitivity optimization for gamma-ray signals is 

now ongoing. 

 

1. Introduction 

ALPAQUITA has a surface air shower array (AS array) with 25% of the size of the 

ALPACA array, and consists of 97 plastic scintillators. The construction of the 

ALPAQUITA array is going to start in August 2019. An underground water Cherenkov 

muon detector pool (MD pool) will be constructed in 2020 after a 1 year operation of the 

ALPAQUITA AS array to improve the rejection power of background cosmic rays and the 

sensitivity to gamma-ray signals.  

 

2. Array design 

The design of the ALPAQUITA AS array is illustrated in Fig.1 (Left). The array consists 

of 97 plastic scintillators which are arranged in 15m intervals. Each scintillator has an 

area of 1 m2 and 5 cm thickness, and a lead plate of 5 mm thickness is placed on it. 

The MD pool consists of 16 MD cells, and the design of the MD cell is illustrated 

in Fig.1 (Right). Particles entering into the water in the pool emit Cherenkov light. We 

can evaluate the number of particles passing the pool by collecting the Cherenkov light 

with a PMT suspended at the ceiling of the pool. Since the MD pool will be placed 2.2 m 

beneath the surface, only the muons with energies above 1.2 GeV can penetrate the soil 

layer, and we get muon signals with almost no contamination from the electromagnetic 

component of air showers. It enables us to discriminate gamma-ray signals and 

background (BG) cosmic rays in an effective way. 
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Figure 1  Left : ALPAQUITA AS array (black) and 2 possible locations of the MD pool (pink : each consists of 16 cells). The region 

surrounded by a blue line is called an inner area. Right : design of an MD cell. 

 

3. Simulation condition 

We executed an MC simulation for evaluating the performance of the ALPAQUITA AS 

array + MD pool, using CORSIKA 76400 code and GEANT4.10.04.p02 code. 

 

3. 1. Gamma-ray source 

We assumed RX J1713.7-3946, the bright gamma-ray source in the southern 

hemisphere, as the gamma-ray object in this simulation. We fitted the flux points of 

RX J1713.7-3946 observed by H.E.S.S. [1] with a broken-power law spectrum, and 

adapted for the simulation the spectral model bending at 6 TeV. 

 

3. 2. Simulation code and simulated MD locations 

In this simulation study, we used CORSIKA 76400 code [2] for air shower generation, 

and GEANT4.10.04.p02 [3] for detector responses. In CORSIKA code, we generated 

signal gamma-rays and BG cosmic rays from the trajectory of RX J1713.7-3946. 

Modifications of the gamma-ray spectrum to the model described above and the BG 

angular distribution isotropic around the source were executed in the analysis stage. 

In GEANT4 code, we simulated two location of the MD pool. In case 1, AS 

array and only the lower-left MD pool were used (see Fig.1. (Left)). In case 2, AS array 

and only the center MD pool were used. For each case, we determined the event-cut 

criterion depending on the number of muons contained in air showers, and evaluate 

the rejection power of BG cosmic rays and the detection significance of the gamma-ray 

events from RX J1713.7-3946 in three energy ranges ≥ 10TeV , ≥ 50TeV , and ≥

100TeV. 
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3. 3. Trigger condition and selection cut  

In this simulation, we defined the energy deposit of one particle on a plastic scintillator 

as 9.4 MeV. Using this definition of one particle, we adopt as a hardware trigger 

condition that at least 4 plastic scintillators detect more than 0.5 particles within 600 

nsec. In addition, we further selected the events passing through the trigger condition 

by applying following 5 selection criteria for each event: 

1. At least 4 plastic scintillators detect more than 0.8 particles. 

2. 5 out of 6 hottest detectors (detecting the largest number of particles) are located in 

the inner area region, which is surrounded by the blue line in Fig.1 (Right). 

3. Residual error that indicates the precision of determination of incoming direction of 

the event is smaller than 1.0. 

4. Zenith angle of the incoming direction of the event is smaller than 40° except the 

study in Sec.4.1. 

5. The angular distance between the source and the incoming direction of the event is 

smaller than 6.9°/√Σ𝜌, where Σ𝜌 is the total number of particles detected by the AS 

array in each air-shower event. 

 

4. Results 

4. 1. Effective area 

Fig.2 presents the effective area of the ALPAQUITA 

AS array for gamma rays. The filled squares are for 

the events with zenith angle  θ < 45°, and the open 

circles are for those with 45° ≤ θ < 60°.  Horizontal 

line drawn at 12,600 m2 corresponds to the area of the 

inner region. Full effective area is achieved above 20 

TeV and 200 TeV for  θ < 45° and  45° ≤ θ < 60° , 

respectively. We can see that in the case of θ < 45°, the 

effective area becomes larger than the inner area of 

the ALPAQUITA AS array in the energy range of >

20 TeV. This means that some fraction of events having 

their shower cores outside the inner area pass through 

the selection criteria described in 3.3. Improvement of 

event selection criteria is under way. 

 

 

 

Figure 2  Effective area of the ALPAQUITA AS array 

for gamma-ray signals. The curve of filled squares is for 

the events of θ<45°, and the curve of empty circles is for 

that of 45°≤θ<60°. 
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4. 2. Muons abundance of gamma-ray showers and cosmic-ray showers 

In Fig.3 we show the simulation 

results for the muon abundance of 

gamma-ray induced showers and 

cosmic-ray induced ones. Two panels 

show the results in 20 ≤ Σρ <

50 and 200 ≤ Σρ < 500 , corresponding 

to the gamma-ray energies of about 10 

TeV and 100 TeV, respectively. The red 

and green points are muon densities 

for gamma-ray and cosmic-ray 

induced showers, respectively. As we 

can see, in the both Σ𝜌  regions, 

cosmic-ray induced showers contain 

about 50 times more muons than gamma-ray induced showers within 100m from the 

cores. By locating the MD within approximately 100 m from any place in the array and 

counting the number of muons contained in air showers, we can discriminate gamma-

ray signals from BG cosmic rays in an effective way. 

 

  4. 3. Sensitivity for gamma-rays from RX J1713.7-3946 

  Fig.4 shows the number of events to be observed in 1 

year as a function of the total number of muons in each 

air shower. The black and red histograms are for 

gamma-ray events from RX J1713.7-3946 and BG 

cosmic-ray events, respectively. This is the case of 158 ≤

Σ𝜌 < 251 in the case 2 (using AS array and only the 

center MD pool), which corresponds to the energy range 

of 50 TeV. In 100 TeV, ALPAQUITA can observe a few 

gamma-ray events from RX J1713.7-3946. Note that this 

is a very preliminary result. Because we are going to 

optimize the analysis method for event-reconstruction 

such as energy, arrival direction and core location, we 

can expect the performance of ALPAQUITA to be 

improved. The optimization of the MD pool location also 

improves the performance. Analysis of other energy bins and the other sources, having 

harder energy spectrum than RX J1713.7-3946, are also in progress. 

Figure 3  Number of muons per unit area contained in air showers 

is shown for two 𝚺𝛒 bins. Horisontal axis indicates the distance 

from the core of an air shower. 𝟐𝟎 ≤ 𝚺𝛒 < 𝟓𝟎 𝐚𝐧𝐝 𝟐𝟎𝟎 ≤ 𝚺𝛒 <

𝟓𝟎𝟎 correspond to the gamma-ray energies of ~10 TeV, and 

~100TeV, respectively. The red and green graphs are for gamma-

ray induced air showers and cosmic-ray induced ones, respectively. 

Figure 4  Histogram of the events observed 

in 1year. The black and red histograms are for 

gamma-ray signals from RX J1713.7-3946 

and BG cosmic-ray events, respectively. This 

is the case of  𝟏𝟓𝟖 ≤ 𝚺𝛒 < 𝟐𝟓𝟏in the case 1, 

corresponding to the energy range of 50 TeV. 
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Summary 

The construction of the ALPAQUITA AS array is going to start in 2019 summer. To 

improve the sensitivity to the gamma-ray signals from astronomical sources, we are 

going to construct an MD pool in 2020 and distinguish between gamma-rays and BG 

cosmic rays. In this paper, we presented a sensitivity to detect 50-100 TeV gamma-rays 

from RX J1713.7-3946. We also note that there is still a room to improve the analysis 

method for event reconstruction and to optimize the design of the array. Further studies 

are in progress. 
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