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The surface detector array of the Pierre Auger Observatory measures the footprint of air show-
ers induced by ultra-high energy cosmic rays. The reconstruction of event-by-event information
sensitive to the cosmic-ray mass, is a challenging task and so far mainly based on fluorescence
detector observations with their duty cycle of ≈ 15%. Recently, great progress has been made in
multiple fields of machine learning using deep neural networks and associated techniques. Apply-
ing these new techniques to air-shower physics opens up possibilities for improved reconstruction,
including an estimation of the cosmic-ray composition. In this contribution, we show that deep
convolutional neural networks can be used for air-shower reconstruction, using surface-detector
data. The focus of the machine-learning algorithm is to reconstruct depths of shower maximum.
In contrast to traditional reconstruction methods, the algorithm learns to extract the essential in-
formation from the signal and arrival-time distributions of the secondary particles. We present the
neural-network architecture, describe the training, and assess the performance using simulated air
showers.
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1. Introduction

The search for the origin of ultra-high energy cosmic rays (UHECRs) is one of the greatest
challenges of astroparticle physics. Studying the mass of these particles helps to localize possible
source candidates and to understand the acceleration mechanisms at the sources. UHECRs exceed
primary energies of 1018 eV leading to extensive air showers when impacting the Earth’s atmo-
sphere. To allow for accurate measurements of UHECRs, the Pierre Auger Observatory [1] was
completed in 2008 featuring a hybrid design. The baseline of the Observatory is the surface detec-
tor [2] (SD) formed by 1660 water-Cherenkov stations placed in a hexagonal grid, which measure
the footprint of extensive air showers induced by UHECRs. The stations are separated by a dis-
tance of 1500 m covering an area of ≈ 3000 km2. This surface detector grid is overlooked by 27
fluorescence telescopes which measure the light emission of nitrogen excited by the particles of the
extensive cascade.

The air-shower development is especially dependent on the energy and the mass of the primary
cosmic ray, causing greater depth of shower maximum for lighter masses and higher energies.
Hence, the atmospheric depth of the shower maximum Xmax enables an estimation of the cosmic-
ray composition [3]. The observable Xmax can be directly measured with the fluorescence detector
(FD). However, measurements of the FD are only possible on moonless nights, which reduces the
duty cycle to ≈ 15%. Alternatively, measuring the shower maximum using the SD is a challenging
task, since it has to be inferred indirectly from the secondary particles recorded on the ground.

Recently, great progress has been made in machine learning using deep neural networks and
associated techniques (deep learning) [4, 5]. The basic elements of deep learning are neural net-
works holding adaptive weights, which can be adjusted to the task at hand by exploring a data set.
The use of graphics processing units (GPUs), large amounts of data and the latest developments
have recently made it possible to train deep networks which hold several million parameters. Es-
pecially in computer vision [6], pattern [7] and speech [8] recognition, using deep networks paved
the way for results of previously unreachable precision [4, 9].

The symmetric placement of sensors in a regular grid is ideally suited for the use of deep-
learning techniques. Besides using pattern recognition for analyzing the spatial characteristic of the
footprint, the arrival-time distribution of the secondary particles is encoded in the time evolution of
the measured signal (signal trace) in each water-Cherenkov station. Recognizing single muons and
particles of the electromagnetic component to infer the longitudinal shower development further
encourages the use of techniques of speech recognition or natural language processing.

Apart from the total signal and the signal start time as used in the standard reconstruction [10],
the machine-learning approach relies on the time-dependent distributions of particles traversing
the water-Cherenkov stations. In contrast to shower-universality analyses [11, 12] where humans
parametrize the signal and arrival-time distributions of secondary particles using analytic models,
the deep-learning algorithm discovers the best parametrization itself.

In this contribution we show that using deep networks enables the reconstruction of several
air-shower properties by combining spatial and time information of the detected air shower. First,
we introduce the deep-convolutional network architecture and discuss the training. Subsequently,
we show that the network is capable of reconstructing the basic shower geometry and providing a
reconstruction of the primary particle energy. Finally, we show that the deep-convolutional neural

2



P
o
S
(
I
C
R
C
2
0
1
9
)
2
7
0

Deep Learning Jonas Glombitza

network provides promising results in the reconstruction of the depth of the shower maximum Xmax

on an event-by-event level.

2. Surface detector data

The air-shower footprint triggers several water-Cherenkov stations, thus inducing a character-
istic signal pattern on the hexagonal SD grid. Each of the triggered stations provides a signal trace
which encodes a time-dependent density of particles traversing the station. The resulting data are
illustrated in Figure 1.

(a) (b)

Figure 1: (a) Measured surface-detector signal pattern, induced by a simulated air shower.
(b) Simulated time traces measured at one surface-detector station.

2.1 Preprocessing

In order to stabilize the training of the deep network, we used data preprocessing. By normal-
izing the input variables to [1,−1], we observed better training stability and faster convergence. To
further enforce all mappings in the neural network to act on the same scale, we adopted a standard
normalization (σ = 1, µ = 0) of our label distributions.

2.1.1 Signal patterns and coordinates

Due to the hexagonal grid of the surface detector, we cannot make direct use of convolutions
which rely on Cartesian representations. In order to use convolutions, we transform our signal
patterns using an axial representation, by padding with zeros and shifting each second row until
alignment is achieved [13]. As a measured footprint usually has a size of several tens of square
kilometers, the pattern is cropped to a window of 13×13 stations to reduce memory consumption.
The station with the largest signal is used as the center of this frame and defines the origin of the
local coordinate system.

As the placement of the stations shows slight deviations from a perfect grid, we use the coor-
dinates of each station as additional inputs. We first transform the x and y coordinate of each event,
into the respective local coordinate system and calculate the deviation with respect to a perfect
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grid. Additionally, we normalize the deviation by dividing by σC, which is the spread of the distri-
bution of grid deviations. For the altitude z of the respective station we use standard normalization
(σz = 1, µz = 0), otherwise the relative height would be calibrated out, which would cause shifts
of the observed atmospheric depth. In order to use the same representations, the position of the
shower core is transformed in the same way.

2.1.2 Signal traces

As the number of particles measured in each detector is approximately exponentially dis-
tributed, we use a logarithmic re-scaling of the trace:

S̃i(t) =
log10[Si(t)+1]
log10[Ssat +1]

. (2.1)

To allow for positive values only we use Si(t)+1. The signal amplitude Si(t) is linearly re-scaled
into the range [0;1] using the minimum and maximum signal level Ssat that can be digitized by the
simulated data-acquisition system.

2.1.3 Arrival time

The arrival direction of the primary particle can be reconstructed using the arrival times t0,i of
the shower front at the stations. For each station, the arrival time is normalized with respect to the
arrival time τcenter measured at the central station and σt,data set, the standard deviation of the arrival
time distribution:

t̃0,i =
t0,i− τcenter

σt,train data set
. (2.2)

2.1.4 Station states

Due to aging effects, bad calibrations or broken PMTs, some of the water-Cherenkov stations
may not be ready to measure real data. In order to let the network correct for this, we add a feature
map encoding the station states (1 = ready to measure, 0 = broken) as additional input. During
the training, we further imitate broken stations by randomly masking stations and propagating this
information to the feature map of stations states.

3. Deep network for air shower reconstruction

The network design for reconstructing cosmic-ray induced air showers features three stages
and is based on [13]. The first stage is used for the characterization of the time trace, hence
learning features which include information about the shower development. The following part
allows forming spatial features. In the final stage, several sub-parts for each reconstruction task are
used.

3.1 Time trace characterization

The first part relies on characterizing the measured signal trace. Investigating the time-dependent
signals allows for measuring the content of the muon and electromagnetic components of the air
shower which each induce different signal shapes. The separation of the components yields in-
formation about the shower age, energy and the primary mass. To let the network exploit local
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Figure 2: (a) Angular distance between the reconstructed and the true shower axes. Different
colors indicate different primaries. (b) Azimuth dependence of the shower-core reconstruction.
The network provides on average an unbiased estimate of the core position (yellow marker).

features in the signal traces, e.g., sharp edges or spikes, we apply convolutions. We use rectified
linear units [5] as activation functions and three convolutional layers with varying kernel sizes. To
stabilize the training and to increase generalization performance, we use weight sharing along the
spatial dimensions. Hence, the convolutional operation works on the time dimension only and re-
duces the time trace with a length of 251 time steps, to 10 features. In each station the same type of
features are extracted which allows the concatenation of station-dependent inputs in the following
part.

3.2 Spatial representation

After the characterization of the signal traces, the extracted features are used as input for the
second part and concatenated with the additional feature maps holding the arrival times, station co-
ordinates and the station states. The following network structure is based on densely connected [14]
and separable convolutions [15]. This stabilizes the training process and provides important physics
parameters like the arrival time in each layer. We observed that using batch normalization adds too
much disturbance in the training. Hence, as activation functions we used scaled exponential linear
units [16] to normalize the data between the layers.

3.3 Task-related part

The final part of the neural-network architecture consists of individual network parts for each
reconstruction task. This last stage is based on residual units [6] and pooling operations. In total,
we used two residual blocks covering three residual units each. Each of the residual units contains
two layers using a rectified linear unit in between. As the last layer we used global average pooling.

5



P
o
S
(
I
C
R
C
2
0
1
9
)
2
7
0

Deep Learning Jonas Glombitza

101 102
log10(Etrue / EeV)

100

101

102

lo
g 1

0(
E D

NN
/E

eV
)

µ = –0.347 EeV
σ = 3.138 EeV

samples = 36416 50

100

150

200

250

300

Co
un

ts
(a)

101 102

E [EeV]

–5

0

5

µ
/

Ee
V

proton helium oxygen iron

101 102

E [EeV]
0.0

0.1

0.2

σ
E

/
E

proton helium oxygen iron

(b)

Figure 3: (a) Correlation between reconstructed and true energies. (b) Energy-dependent bias and
resolution of the reconstruction shown for different primaries.

4. Performance in simulations

We used in total ≈ 400,000 air showers simulated with CORSIKA [17] using the hadronic
interaction model EPOS-LHC [18]. The data is simulated in an energy range of 1− 160 EeV
following a spectrum of E−1. As primary particles, protons, helium, oxygen and iron nuclei are
used covering a full azimuth range and a zenith range of θ ∈ [0◦,65◦]. We used 360,000 showers
for training the network, 4,000 for the validation and around 37,000 for the final evaluation.

4.1 Training

We trained the model for 27 epochs on a Nvidia GeForce GTX 1080 graphics card which
took ≈ 7 h with a batch size of 32. For training the network, we used Keras [19] with the Ten-
sorFlow [20] backend. As optimizer Adam [21] was used with its default settings. We further
smoothly decayed the learning rate and dropped the learning rate by a factor of 1.33 when the
validation loss did not decrease after three epochs. As loss for all tasks, we used the mean squared
error and re-weighted the losses to the same order of magnitude.

4.2 Geometry reconstruction

Before investigating the reconstruction of complex shower variables like the shower maxi-
mum, the network needs to be capable of providing a reconstruction of the basic air-shower prop-
erties. For the validation of the deep-learning based reconstruction, we first investigated the qual-
ity of the reconstructed shower geometry. In Figure 2a, the angular distance between the recon-
structed and the true shower axis is illustrated, showing a good angular resolution (68% quantile)
of q68 = 0.8◦. The colors represent different primary particles. Figure 2b shows the reconstruction
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of the shower core. The absolute resolution amounts to σ ≈ 37 m. Further, no azimuth-dependent
bias is visible which implies that the network is able to correct for shower asymmetry effects.

4.3 Reconstruction of the energy

After validating the basic reconstruction of the shower geometry, the reconstruction of the
primary cosmic-ray energy can be studied. Figure 3a shows the reconstruction of the energy. The
overall reconstruction shows no bias. In Figure 3b the different resolutions and biases are plotted for
different primaries. The composition bias depends on the energy and increases for higher energies.
The relative energy resolution improves for higher energies due to decreasing fluctuations and
achieves a relative resolution of σE/E ≤ 10% at around 100 EeV.
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Figure 4: (a) Correlation between reconstructed and true depths of shower maximum Xmax.
(b) Energy-dependent resolution and bias of the Xmax reconstruction.

4.4 Reconstruction of the shower maximum

With the precision described previously, the network is able to reconstruct the air-shower ge-
ometry and estimate the primary cosmic-ray energy. In the following the reconstruction of the
shower maximum Xmax is investigated. In Figure 4a, the reconstructed shower maxima are shown
for proton, helium, oxygen and iron. The correlation between the true Xmax and the reconstruction
amounts to 0.8. It can be seen that the elements show separation in the reconstructed shower max-
ima, and hence the algorithm can be used for an estimation of the cosmic-ray mass. The overall
resolution of the reconstruction is ≈ 30 g/cm2. The energy dependence of the resolution and bias
is shown in Figure 4b for different primaries. The bias decreases from ≈ 40 g/cm2 at 3 EeV to
≤ 25 g/cm2 at 150 EeV. Due to the decreased shower-to-shower fluctuations, the reconstruction
of heavier elements shows an improved resolution of σXmax ≈ 25 g/cm2 at the highest energies.
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5. Conclusion

Extensive air showers induce time-dependent signal patterns at the surface detector of the
Pierre Auger Observatory. To reconstruct the properties of the primary cosmic ray we used a deep
neural network. The presented algorithm relies on convolutions exploring huge amounts of data.
We have discussed the intrinsic structure of our model, which learns time-dependent representa-
tions in a first stage. In the second stage the network allows for the extraction and combination of
features in space and time. We have demonstrated that deep learning can be used to reconstruct
the geometry and energy of the air shower using simulated surface-detector data. In addition, the
reconstruction of the shower maximum Xmax showed very promising results. Further validating the
performance with fluorescence detector measurements, and investigating different hadronic inter-
action models, would allow for a mass-composition estimation with the full SD event statistics.
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