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The problem of accelerating cosmic rays is one of fundamental importance, particularly given
the uncertainty in the conditions inside the acceleration sites. Here we examine Diffusive Shock
Acceleration in arbitrary turbulent magnetic fields, constructing a new model that is capable of
bridging the gap between the very weak (δB/B0 � 1) and the strong turbulence regimes. To
describe the diffusion we provide quantitative analytical description of the "Bohm exponent" in
each regime. We show that our results converge to the well known quasi-linear theory in the weak
turbulence regime. In the strong regime, we quantify the limitations of the Bohm-type models.
Furthermore, our results account for the anomalous diffusive behaviour which has been noted
previously.
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1. Introduction

Diffusive Shock Acceleration (DSA), also known as first-order Fermi acceleration is a leading
model in explaining the acceleration of particles and production of cosmic rays (CRs) in various
astronomical objects [1, 2, 3, 4]. In this model particles gain energy by repeatedly crossing a shock
wave by elastically reflecting from magnetic turbulence on each side. An E−2 energy spectrum
consistent with CR particle observations on earth is produced (e.g., [3, 5] and references therein).

Previous studies of DSA can broadly be divided into three categories. The first is the semi-
analytic approach (e.g. [6, 7, 8]), in which the particles are described in terms of distribution func-
tions, enabling analytic or numerical solution of the transport equations. While this is the fastest
method, reliable models only exist in a very limited parameter range (weak turbulence, small-angle
scattering, weakly anisotropic, etc.). Furthermore a heuristic prescription for the diffusion is re-
quired. The second is the Monte-Carlo approach (e.g. [4, 9, 10, 11]), in which the trajectories
and properties of representative particles are tracked and the average background magnetic fields
are estimated. The advantage of this method is that it enables the study of a large parameter space
region, and is very fast and therefore can be used to track the particle trajectories over the entire
region where the acceleration is believed to occur [12]. On the other hand this method uses simpli-
fying assumptions about the structure of the magnetic fields and the details of their interaction with
the particles. For example, several existing Monte-Carlo codes [13] use scattering models which
are either limited to weak turbulence, such as quasilinear theory (QLT; see [14, 15] and further
discussion below), or are not well supported theoretically, such as the Bohm type [16]. The third
approach is particle-in-cell (PIC) simulations [17, 18, 19, 20]. These codes simultaneously solve
for particle trajectories and electromagnetic fields in a fully self-consistent way. They therefore
provide full treament of particle acceleration, magnetic turbulence and formation of shocks. How-
ever, existing codes are prohibitevely expensive computationally and are therefore limited to very
small ranges in time and space, typically many orders of magnitude less than the regime in which
particles are believed to be accelerated [21].

Of the three approaches the one that currently seems best applicable to astrophysical environ-
ments is the Monte-Carlo approach. Analytic techniques quickly become unwieldy when trying
to account for e.g. strong turbulence, oblique shocks or plasma instabilites which develop under
different conditions [22, 10]. On the other hand, the computational power required for carrying
out a PIC simulation over the full dynamical range is not expected to be available for many years.
While the Monte-Carlo approach also suffers several weaknesses, some of these weakness can be
treated with reasonable computational time.

At the heart of the Monte-Carlo approach lies a description of the particle-field interaction.
Various authors use various prescriptions (e.g. [13, 23]), which rely on very different assumptions.
In the present work [24] we examine and quantify the validity of the two most frequently used of
these assumptions, namely the quasi-linear theory (QLT) and Bohm diffusion approximation.

2. Quantifying particle-field interactions in Monte-Carlo codes

Particle-field interaction occurs continuously along the particle’s trajectory. However, in order
to carry a numerical computation it needs to be discretized.
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Many monte-Carlo codes (e.g. [4, 9, 10, 11]) typically consider an idealised scenario, where
energy changes and local spatial variations are neglected. The wave-particle interaction is deter-
mined by a single quantity, the particle’s pitch angle ϑ , i.e. the angle its velocity vector makes
with the direction of the background magnetic field. As the particle undergoes “scattering” from
the (turbulent) magnetic field, its pitch angle, µ = cosϑ changes in a stochastic way. Studies of
this type typically treat the pitch angle as undergoing a random walk.

Analytic work has mainly centred on the “quasilinear” family of approximations (QLT), orig-
inally formulated by [14], in which the deviation from helical orbits is treated perturbatively (e.g.,
[25, 15]) by averaging out wave contributions over many gyrotimes. The turbulent nature of the
magnetic field is quantified by the turbulence ratio δB/B0, where B0 is the strength of the guiding
field. A first-order approximation in δB/B0 around B0 has been shown to give an accurate descrip-
tion of particle motion in the weak regime, δB/B0� 1. However, no observational evidence exist
that this is indeed the regime that operates in many objects in nature. Additionally, QLT approxi-
mations result in a resonance condition, in which the particles interact only with a resonant portion
of the magnetic turbulent wave spectrum (k ≈ 1/rg for wavenumber k and gyroradius rg), though
this is not necessarily the case [26].

A second approach that is in wide use by many large scale Monte-Carlo simulations (e.g.
[22, 12]) is the Bohm Diffusion approximation. In this approximation the particle’s motion is
described as undergoing a series of discrete, isotropic scatterings. In contrast to QLT this approach
does not account for pitch-angle dependence of scatterings. Rather, in this model the mean free
path λmfp between scattering assumes the form

λmfp = ηrα
g (2.1)

where the Bohm exponent α is a free parameter whose value is unknown and is often taken as unity
[27], η is a coupling constant and rg is the particle’s gyration radius. There is some numerical sup-
port for the validity of this model in the context of DSA, in particular in the intermediate turbulence
regime, δB≈ B0 [16] and possibly the strong turbulence (δB & B0) as well [28, 29].

3. New approach to study particle-field interaction: model and methods

In order to provide a better description of particle-field interactions, as well as to quantify
the validity and limitations of each of the approximations used, we developed a new code that
follow particle trajectories in various turbulent magnetic field background. The magnetic fields are
calculated at every timestep at the particle’s current spatial location, rather than being evaluated on
a grid at the beginning of the simulation (as in previous studies). The advantages of this method
are that 1) it makes the spatial resolution effectively continuous and 2) it facilitates modifying the
turbulence spectrum during particle motion. The disadvantage is the higher cost of performance.

Initial populations of waves and particles are prescribed and the total magnetic field B is cal-
culated as a function of position by summing the contribution δB of each wave, along with the
background field B0. The turbulent part of the field is found by summing over a discrete population
of waves at each position x j,

δB = ∑
waves

Akei(k jx j+φk)n. (3.1)
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Here Ak is the amplitude of the wave with wavenumber k, ki is its wavevector, n is its polarisation
vector and φk is its phase. The phases and polarisation angle are chosen randomly from a uniform
distribution on [0,2π]. We further distinguish waves having k =

(
0,0,k‖

)
as slab waves and k =

k⊥ (cosϑ⊥,sinϑ⊥,0) for some angle ϑ⊥, as 2d-waves. Turbulence containing both kinds of wave is
said to be composite. We denote he ratio of energies in each type of wave by rslab ≡ δB2

slab/δB2
total.

For the spectrum of the waves we choose a general smoothly broken power law form, as
proposed by [30]. Such a form naturally incorporates e.g. Kolmogorov and Goldreich-Sridhar
turbulence as special cases [31, 32].

Numerical setup. In running the simulations, we assume that the wavenumbers are uniformly
distributed in log-space (∆ lnk = ∆k/k is constant) between the minimum and maximum kmin =

10−4 and kmax = 106 respectively. These values are chosen so as to allow resonant interaction at
most values of µ . Particles are initially uniformly distributed in µ-space ensuring they interact
with different parts of the spectrum. Their initial velocity is chosen to be v = 0.1c. The number of
waves and particles per seed is nw = 4096 and np = 256 respectively. The number of random seeds
corresponding to distinct turbulence realisations for ensemble average ns = 8, which was found
to be enough to achieve convergence. The integrator used is bulirsch-stoer from odeint

with relative and absolute tolerance εrel = εabs = 10−9. The particle trajectories are tracked and the
scattering time ts and pitch-angle diffusion coefficient Dµµ are calculated.

4. Results and discussion

4.1 On the validity of the diffusion approximation and limits of the QLT model

A key unerlying assumption of both the QLT and the Bohm approximations is that the evolu-
tion of the particles pitch angle is well described by a diffusion equation in µ-space, with diffusion

coefficient Dµµ ≡
〈
(∆µ)2

∆t

〉
, where ∆µ = µ (t)−µ (0) [see Ref. [25] for discussion on Dµµ ].

Of particular importance here is the time scale ∆t over which ∆µ is measured. In the limit
∆t→ 0 the diffusion coefficient approaches zero, regardless of the details of the diffusion, because
the numerator in Dµµ is second order in ∆t, while the denominator is only first-order. On the other
hand the value of ∆t cannot be too long. Since ∆µ can be at most 2 an arbitrarily large value of ∆t
causes Dµµ to vanish. We thus conclude that in order for the QLT approximation to be valid, one
must consider time step tg� ∆t � tD, and Bohm requires tg . ∆t � tD. Here, tg is the gyrotime,
and tD = 1/

〈
Dµµ

〉
is the diffusion time. This is demonstrated in Figure 1, where we plot Dµµ as

a function of ∆t for various turbulence levels. Only in the green (shaded) region is the diffusion
approximation valid.

In Figure 2, we show the diffusion coefficient as a function of turbulence level. It initially
increases as δB2 (QLT regime), gradually flattens around δB/B0 = 10−1 and stays roughly con-
stant thereafter. We argue that this flattening is not physical but an artifact of the fact that we are
measuring a bounded quantity ∆µ over a time period longer than its dynamical time 1/Dµµ . We
thus find that the QLT approxmation is valid as long as the turbulence level is δB/B0 ≤ 10−1.

4.2 Validity of the Bohm approximation

One can model the diffusion of charged particles as a power law relationship between mean
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Figure 1: The upper plots show Dµµ (pitch-angle averaged) as a function of ∆t for rslab = 0.2, with the
solid line for the particle average and the shaded area representing one standard deviation. The lower plots
show the average slope of Dµµ as a function of ∆t, highlighting the transition from ballistic to subdiffusive
behaviour ( dlnDµµ

dln∆t < 0, dashed red line), and the diffusive regime ( dlnDµµ

dln∆t ≈ 0, green shading). The diffusive
range shrinks as the turbulence strength increases. These plots are normalized to B0 = 1.
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Figure 2: Dµµ (pitch-angle averaged) measured at ∆t = 20tg for various (slab-only) turbulence levels. Good
agreement with the (second order) QLT models for weak turbulence is found. For turbulence levels δB & 1
the measurement time ∆t of 20tg is no longer within the diffusion regime (see Figure 1) and so the values
are no longer meaningful.
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free path λmfp and gyroradius [33] (see Equation 2.1). Here, λmfp refers to the expected value of
the distance travelled by a particle in the time it takes for ϑ to change by π/2 [4, 10].

Considering the “Bohm approximation” to mean α ≈ 1 in Equation 2.1, implies a single scat-
tering every gyration time (as long as η is of the order unity). This ratio is presented in Figure 3
(left). From the figure we see that this form of Bohm approximation is valid only around δB/B0≈ 1
for the unmodified gyrotime tg. In [24] we provide analytical fits to this function, for various types
of turbulence.

It is clear from Figure 3 (left), that the value of α is in fact very different than unity, except
around δB/B0 ≈ 1. Hence, the “classical” Bohm diffusion model has a very limited valdity. In
order to extend the valdity range of the “Bohm”-type models, we defined the “auxiliary Bohm
exponent”, α̃ , via

α = α̃

(
1+
(

δB
B0

)−2
)
. (4.1)

With this definition, α̃ is the slope of the data presented in the left side of Figure 3. The values of
α̃ are shown in Figure 3 (right), for various values of the turbulence levels.
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Figure 3: Left: scattering time ts as a function of turbulence level δB/B0 with rslab = 1.0. Here, t ′g represents

the “effective” gyrotime determined by the effective field, Be f f =
√

B2
0 +δB2. Points represent the ensemble

and pitch-angle median of the measured scattering times for each turbulence level, and the error bars the first
and third quartile. The red line is an analytical fit, whose parameters can be found in [24]. Right: Auxillary
Bohm exponent as a function of turbulence level for several values of rslab. It shows how a Bohm-type
model can interpolate from weak up to intermediate and strong turbulence, by choosing the approximate
values α̃ = 0, 2.5 and 0.7 for these regions respectively.

4.3 Concluding remarks

While a comprehensive model of CR transport in accelerators is necessary for understanding
the origins of high-energy CRs, existing diffusion models are limited and may not cover some
relevant ranges of parameters. This is because current analytic approaches (QLT, Bohm) rely on
approximations that are invalid in important turbulence regimes.
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The applicability of the diffusion model depends on the time step / measuring time ∆t, the
choice of which depends on several factors. It is bounded below by the wave crossing time, the
gyrotime, and also the dynamical timescale for other relevant phenomena (e.g., plasma instabilities)
and is bounded above by the diffusion time. For strong turbulence, therefore, there may be no
region in which a valid ∆t exists. In the absence of such a ∆t, it is not meaningful to treat the
problem as diffusive, and more sophisticated models, e.g., anomalous diffusion, must be used.

The Bohm approximation, while generally applied for its convenience, has been shown to
be generally inapplicable to the case of diffusion in collisionless plasmas of the type described
here. We propose a modification to this model, namely anomalous diffusion, and measured the
anomalous diffusion exponent α̃(δB) (Figure 2). The prescription we provide is useful for next
generation MC codes of particle acceleration.
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