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1. Introduction

Precise electroweak measurements coupled with precise theoretical calculations successfully
predicted the masses of the W and Z bosons, the top quark and most recently of the Higgs boson
even before their direct observation. Such measurements are essential to test the consistency of the
Standard Model (SM), explore its limits of validity, and they could also point toward New Physics
and constrain the parameters of beyond the SM theories.

The electroweak (EW) gauge and Higgs sector is described by four parameters, which are
often chosen as the fine structure constant α , the Fermi coupling constant (GF) and the masses
of the Z and Higgs bosons (mZ and mH). Other parameters, such as the electroweak mixing angle
(θW), the mass of the W boson (mW ), the gauge couplings and the parameters of the Higgs potential
are then predicted by theory. By performing measurements of the chosen and derived parameters,
the model becomes overconstrained and global fits can verify its consistency.

The ultimate aim of the LHC electroweak precision physics programme (not discussing here
the Higgs sector that is summarised in Ref. [1]) is to measure directly the EW mixing angle to
0.0001 and the W boson mass to 10 MeV, i.e. with precisions that are competitive with the global
fit uncertainties: sin2

θW = 0.23153±0.00006 and mW = 80.354±0.007 GeV [5], shown in Fig. 1
(top). The current world averages are about a factor two less precise: sin2

θW = 0.23152±0.00016
and mW = 80.379±0.013 GeV [2].

To achieve this goal an excellent understanding of uncertainties originating from experimental
sources and parton distribution functions (PDFs) are needed. The ATLAS [3] and CMS [4] experi-
ments thus pursue a rich program of Z and W boson studies. In the following a summary of recent
results in this area is given, including the measurements of differential production cross-sections
as a function of various kinematic variables (like the transverse boson momenta, rapidity and addi-
tional jet variables), the Z→ `+`− angular coefficients and forward - backward asymmetry as well
as the W boson production charge asymmetry. These results are based on the LHC Run 1 and Run
2 data collected at center-of-mass energies of

√
s = 7, 8 and 13 TeV with an integrated luminosity

of about 5 fb−1, 20 fb−1 and 3-80 fb−1, respectively. As these measurements typically require the
best detector calibration possible, the full Run 2 dataset collected at

√
s = 13 TeV between 2015

and 2018 amounting to approximately 150 fb−1 per experiment with an average number of p-p
interactions per bunch crossing of 〈µ〉 ≈ 34 is still being analysed. A summary of the available
cross-section measurements of various SM processes from ATLAS is shown in Fig. 2, compared
to theoretical predictions calculated at least at next-to-leading order (NLO) in perturbative quan-
tum chromodynamics (pQCD). It shows an impressive agreement over 14 orders of magnitude in
cross-section from the most abundant to the rarest processes observed so far, attesting the triumph
of both experimental and theoretical efforts.

2. Top quark mass

The top quark mass plays a very important role in testing the SM self-consistency as it gives
significant contribution to the values of EW parameters via quantum corrections (see Fig. 1 (bottom
right)). Its value is also critical for the stability of the EW vacuum. Direct measurements use the
decay products to reconstruct the top quark mass. After comparing the data to Monte Carlo (MC)

1



P
o
S
(
F
F
K
2
0
1
9
)
0
0
5

Precision tests of the Standard Model at LHC Gabriella Pásztor

0.2312 0.2314 0.2316 0.2318

)l
effθ(2sin

0

1

2

3

4

5

6

7

8

9

102 χ
∆

σ1

σ2

σ3
)l

effθ(2SM fit w/o meas. sensitive to sin

 meas.
H

) and Ml
effθ(2SM fit w/o meas. sensitive to sin

LEP/SLD [Phys. Rep. 427, 257 (2006)]

Tevatron [arXiv:1801.06283]

G fitter SM

M
ar ’18

80.34 80.36 80.38 80.4 80.42

 [GeV]WM

0

1

2

3

4

5

6

7

8

9

102 χ
∆

σ1

σ2

σ3
 measurementsWSM fit w/o M

 measurementsH and MWSM fit w/o M

LEP [arXiv:1302.3415]

Tevatron [arXiv:1204.0042]

ATLAS [EPJC 78, 110 (2018)]

G fitter SM

M
ar ’18

0.231 0.2315 0.232

)eff
lθ(2sin

80.3

80.35

80.4

80.45

80.5

 [
G

eV
]

W
M

68% and 95% CL contours

)  measurements
eff
fθ(2 and sin

W
direct M

) and Z widths measurements
eff
fθ(2, sin

W
fit w/o M

 measurements
H

) and M
eff
fθ(2, sin

W
fit w/o M

 and Z widths measurements
H

), M
eff
fθ(2, sin

W
fit w/o M

 0.013 GeV± = 80.379 WM

) = 0.23153
eff
fθ(2sin

 0.00016±            G fitter SM

M
ar ’18

140 150 160 170 180 190

 [GeV]tm

80.25

80.3

80.35

80.4

80.45

80.5 [
G

eV
]

W
M

68% and 95% CL contours

 measurements
t

 and m
W

Fit w/o M
 measurements

H
 and M

t
, m

W
Fit w/o M

 measurements
t

 and m
W

Direct M

σ 1± comb. WM
 0.013 GeV± = 80.379 WM

σ 1± comb. tm
 = 172.47 GeVtm

 = 0.46 GeVσ
 GeV 

theo
 0.50⊕ = 0.46 σ

 = 125 GeV

HM
 = 50 GeV

HM
 = 300 GeV

HM
 = 600 GeV

HM
G fitter SM

M
ar ’18

Figure 1: (top) ∆χ2 as a function of (left) the effective weak mixing angle and (right) the W boson mass
in the global SM fit by the Gfitter group (blue band). The result of the fit without the Higgs boson mass
measurement is also shown (grey band). All precision observables sensitive to sin2

θeff on the left and direct
measurements of mW on the right are excluded from the fit. The direct measurement results are indicated
by dots with 1σ error bars. (bottom) Contours of 68% and 95% confidence level obtained from scans of fits
with fixed variable pairs of (left) mW vs. sin2

θeff and (right) mW vs. mt . The narrower blue and larger grey
allowed regions are the results of the fit including and excluding the mH measurement, respectively. The
horizontal bands indicate the 1σ regions of the direct measurements. From Ref. [5].

simulation predictions, the measured value is interpreted as the pole mass. Indirect measurements
on the other hand determine either the pole mass or the running mass in the minimal subtraction
(MS) scheme from the cross-section or from differential distributions. As illustrated in Fig. 3,
the various measurements from ATLAS [7] and CMS [8] agree well with each other within the
experimental uncertainty of about 0.3% and indicate a somewhat smaller value than that of the
Tevatron combination, moving the world average to 172.9±0.4 GeV [2].

3. W boson mass

The first LHC measurement of the W boson mass was published by ATLAS based on its√
s = 7 TeV data of W → eν and W → µν decays [9]. The W mass is derived from a template fit to

the lepton transverse momentum (pT) distribution (shown in Fig. 4 (left)) or to the transverse mass
(mT) calculated from the lepton four-momenta and the missing transverse momentum. While the
first is sensitive to the theoretical modelling of the W boson transverse momentum distribution, the
latter depends on the hadronic recoil momentum calibration. Templates are taken from a POWHEG
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Figure 2: Summary of Standard Model total and fiducial production cross-section measurements by ATLAS,
corrected for branching fractions, compared to the higher order theoretical expectations [6].

+ PYTHIA8 simulation and then reweighted to the best theoretical model. DYNNLO is used to
model the rapidity distribution and W polarisation, while the transverse momentum distribution
is taken from PYTHIA8 using the AZ tune [10]. Z → e+e−, µ+µ− events are heavily used for
modelling validation as well as detector calibration.

The main experimental challenges come from the electron, muon and hadron recoil momen-
tum scale calibration, contributing 6.4%, 6.6% and 2.9% uncertainties, comparable to the statistical
error of 6.8%. The multijet background is measured using template fits in regions with modified
kinematic selection with the template shapes acquired using inverted lepton isolation requirements.
The background uncertainty amounts to 4.5%. The dominant uncertainty comes from physics mod-
elling. Parton distribution function uncertainties are the largest (9.2%). QCD related uncertainties
(8.3%) affect the W transverse momentum distribution as well as extrapolations from Z measure-
ments to W final states. Electroweak uncertainties are subdominant (5.5%). The total uncertainty
of the final combined measurement is thus 18.5%. The individual measurements are compatible
with each other as illustrated in Fig. 4 (middle), the χ2 per degrees of freedom is 29/27. The result
mW = 80370± 7 (stat.) ±11 (exp. syst.) ±14 (mod. syst.) MeV = 80370± 19 MeV is close in
precision to the Tevatron combined value. For comparison see Fig. 4 (right).

In order to reach the ultimate precision goal of less than 10 MeV uncertainty, the missing
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Figure 3: (left) Summary of the measurements of the top quark pole mass by ATLAS, compared to direct
measurements [7]. (right) Summary of CMS top quark mass measurements. Tevatron and world combina-
tion (2014) results are also shown [8].
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Figure 4: (left) Kinematic distribution of the lepton pT in simulated events for the W boson mass fitted value
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indicated. (right) The measured W mass is compared to the SM prediction from the global electroweak fit by
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From Ref. [9].
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transverse momentum reconstruction as well as the PDF information need to be improved. The
upgraded detectors for HL-LHC would offer an opportunity as their finer segmentation would
allow lower occupancy and the extended pseudorapidity coverage of the tracking system would
contribute to an improved hadronic recoil calibration [11] as shown in Fig. 5 (right). Already with
300 pb−1 data at low pile-up, the PDF uncertainty becomes dominant over the statistical one (see
Fig. 5 (left)). HL-LHC will collect valuable PDF data, improving on today’s precision by a factor
of two, as illustrated on Fig. 5 (right). Even stronger constraints would be attainable from electron
- proton collisions at LHeC, decreasing the PDF uncertainty to the 2-3% level.
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Figure 5: (left) Statistical and PDF uncertainty components as a function of integrated luminosity, for fully
combined measurements at

√
s = 14 TeV, using the CT10 PDF set. (right) Measurement uncertainty for 200

pb−1 data collected within |η`|< 2.4 and |η`|< 4 for current CT10 and future PDF sets. From Ref. [11].

4. Z→ `+`− angular coefficients and forward-backward asymmetry

The five-dimensional differential cross-section of Z→ `+`− can be factorised into the unpo-
larised cross-section (σU+L) and the sum of nine harmonic polynomials describing the angular
distribution (with θ denoting the polar and φ the azimuthal angle in the boson rest frame) with
dimensionless angular coefficients A0−7(pZ

T,y
Z,mZ) depending on the transverse momentum, ra-

pidity and mass of the dilepton system:

dσ

dpZ
T dyZ dmZ dcosθ dφ

=
3

16π

dσU+L

dpZ
T dyZ dmZ{

(1+ cos2
θ)+

1
2

A0(1−3cos2
θ)+A1 sin2θ cosφ (4.1)

+
1
2

A2 sin2
θ cos2φ +A3 sinθ cosφ +A4 cosθ

+A5 sin2
θ sin2φ +A6 sin2θ sinφ +A7 sinθ sinφ

}
The asymmetry in the total production cross-section of forward (cosθ > 0) and backward

(cosθ < 0) going leptons AFB = (σF−σB)/(σF +σB) is related to the V-A structure of lepton
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couplings, and arises due to the A4 cosθ ∗ term in Eq. 4.1, with AFB = 0.375 ·A4. As forward-
backward asymmetry depends on the dilepton mass, the weak mixing angle and the initial state
quark flavour, its precise measurement around the Z resonance peak can be used to derive sin2

θW

and the light quark weak couplings. Contributions to AFB could also arise from new physics, for
example the existence of new neutral gauge bosons, quark-lepton compositeness, supersymmetric
partners of SM particles or extra spatial dimensions giving rise to new heavy states.

The measurements are performed in bins of the dilepton mass and rapidity in the Collins-Soper
frame to reduce uncertainty from the transverse momentum of the incoming quarks. The extracted
AFB values are then fitted to derive the effective mixing angle defined by the ratio of the vector and
axialvector couplings of the Z boson to the fermions as v f /a f = 1−4|Q f |sin2

θ
f

eff. It is related to
the weak mixing angle sin2

θ
f

eff = k f sin2
θW, where k f is determined from higher order calculations.

The method used by the CMS Collaboration is illustrated in Fig. 6 (top). The effective mixing angle
is measured to be sin2

θ `
eff = 0.23101±0.00036 (stat) ±0.00018 (syst) ±0.00016 (theo) ±0.00031

(PDF) = 0.23101±0.00053, with the dominant uncertainty coming from the statistical error of the
fit and the knowledge of the PDFs [12].

ATLAS extracts the A4 angular coefficient by fitting the reconstructed cosθCS,φCS,m`` and
y`` distributions in Born-level m`` and y`` bins, after folding the theoretical Pi(cosθCS,φCS) angu-
lar distributions to detector level [13]. The measurement of A4 in such a way in the full decay
lepton phase space is dominated by statistical uncertainties. sin2

θ `
eff then derived using the linear

dependence shown in Fig. 6 (bottom left). The most precise measurement comes from the central
- forward electron pair channel which gives access to leptons up to a pseudorapidy of |ηe| = 3.6
and thus are the most sensitive for AFB and A4. The combined ATLAS result including also central
- central electron pairs and muon pairs is sin2

θ `
eff = 0.23140± 0.00021 (stat.) ±0.00024 (PDF)

±0.00016 (syst.) = 0.23140± 0.00036. A summary of the results from various experiments is
shown in Fig. 6 (bottom right).

5. Drell-Yan differential cross-section measurements

Drell-Yan lepton pair production provides a stringent test of higher-order electroweak and
QCD predictions, it is sensitive to resummation techniques and constrains parton distribution
functions that are a leading uncertainty in many LHC measurements. The precise measurement
of lepton pairs from Z (and W ) decays are also essential for electroweak measurements, such
as the W mass and the weak mixing angle presented above. In fact, the knowledge of the W
boson pT is a crucial ingredient for a W mass measurement. The most precise W pT distri-
bution prediction is obtained by extrapolating from the measured Z boson pT distribution with
dσ(W )/dpT = [(dσ(W )/dpT)/(dσ(Z)/dpT)]theory× [dσ(Z)/dpT]measured.

The CMS measurements are performed with final state radiation corrected (so called dressed)
leptons. The background contribution in the Z/γ∗ → `+`− final state is low, as shown in Fig. 7
(left), getting contribution from tau pairs, diboson production and top quark production. A good
agreement over the whole dilepton mass range is found with Standard Model predictions calcu-
lated by FEWZ at NNLO pQCD and NLO electroweak corrections with the NNPDF3.0 PDF set
both on and off Z resonance peak (Fig. 7 (middle)). At high masses the sizeable photon-induced
contributions are also tested using FEWZ and LUXqed as shown in Fig. 7 (right).
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Figure 6: (top left) Comparison between data and best-fit AFB distributions in the dielectron channel of the
CMS analysis [12] as a function of dilepton mass, in six rapidity bins, using templates based on the central
prediction of the NLO NNPDF3.0 PDF set. The error bars represent the statistical uncertainties in the data.
(top right) AFB dependence on the dilepton mass for sin2

θ `
eff = 0.23120 in POWHEG, from Ref. [12] . The

solid lines in the bottom panel correspond to six changes at sin2
θ `

eff around the central value. The shaded
bands illustrate the standard deviation in NNPDF3.0 replicas. (bottom left) Predicted variation of A4 as
a function of sin2
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θW = 0.23152 as well as by the improved Born approximation [13].

(bottom right) Comparison of the measurements of the effective leptonic weak mixing angle at various
colliders, taken from Ref. [13].

Various differential cross-sections are studied by CMS [15] using the fiducial region of |η`|<
2.4, pT > 25 GeV and |m``− 91.2 GeV| < 15 GeV. The normalised cross-section as a function
of the boson transverse momentum distribution is measured with an uncertainty below 0.5% for
p`` < 50 GeV (as noted in the next section the normalisation has a dominant uncertainty from
luminosity calibration). The results are corrected for detector effects and compared to various fixed-
order, resummed and parton shower predictions in Figs. 8 and 9. The parton shower Monte Carlo
generators use NLO QCD predictions for Z (Powheg) and Z+n jets (n= 0−1 for Powheg+MiNLO
and n = 0−2 for MadGraph5_aMC@NLO, the latter using the FxFx scheme for matching). The
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Figure 7: (left) The observed dimuon invariant mass spectrum. The electroweak background from the DY
production of tau pairs, WW, WZ, and ZZ processes as well as the lepton misidentification contribution of
W+jets and QCD multijet processes are shown. The error bars on the data points represent the statistical
uncertainty only. (middle) The differential DY cross-section measured by CMS and as predicted by the
NNLO theoretical calculation of FEWZ in the full phase space. The coloured boxes represent the theoretical
uncertainties.(right) The ratio of the NNLO theoretical prediction from FEWZ to data for the differential
cross-sections in the m > 200 GeV mass range. The ratio with the photon-induced contribution (red dashed
lines) is also shown. From Ref. [14].

fixed order FEWZ and ZjNNLO predictions are NNLO in perturbative QCD (pQCD) for Z and
Z+jet production, respectively. Geneva and Resbos (not shown here) include leading order EW
corrections and resummation at NNLL. Resbos can not describe the high-pT region, while Geneva
provides a reasonable description of the data. More details about the predictions and comparisons
are in Ref. [15].
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Figure 8: (left) The measured absolute cross-sections with total uncertainty bands in bins of dilepton trans-
verse momentum, compared to various theoretical predictions. (middle - right) The ratio of cross-section
predictions to the CMS data. The error bars around the predictions correspond to the combined statistical,
PDF, and scale uncertainties. From Ref. [15].

6. W boson production and charge asymmtery

As already mentioned, PDF uncertainties are one of the dominant contributions for precision
measurements. The W boson production charge asymmetry Aη = (σ+

η −σ−η )/(σ+
η +σ−η ) (with
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Figure 9: The measured absolute cross-sections with total uncertainty bands in bins of (left) dilepton rapidity
and (middle) optimised angular variable φ ∗, compared to various theoretical predictions. (right) The ratio of
cross-section predictions to the data in bins of φ ∗. The error bars around the predictions correspond to the
combined statistical, PDF, and scale uncertainties. From Ref. [15].

σ±η denoting the W± boson differential cross-section as a function of the pseudorapidity) allows
the u(x)/d(x) PDF ratio to be constrained in the Bjorken-x region of x = 0.001−0.1. The clean W
production signature (see Fig. 10 (left)) is thus ideal to test the various PDF sets. The cross-section
measured by ATLAS, corresponding to a fiducial selection of |ηµ | < 2.4, pT,µ > 25, pT,ν > 25
GeV and mT(µ,ν) > 40 GeV at Born level, is shown in Fig. 10 (middle). The asymmetry is
then compared to DYNNLO with various PDF sets in Fig. 10 (right). The luminosity uncertainty
(1.9%) dominates, the sum of all other contributions being 1-1.5% [16]. Reaching 1% experimental
precision would allow discrimination between the PDF sets.
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Figure 10: (left) The W boson transverse mass (bottom) distribution of selected events with positive muons.
The ATLAS data are compared to the theoretical prediction, showing also the background contributions.
(middle) The W+ fiducial cross-section, differential in muon pseudorapidity, multiplied by the branch-
ing fraction for the decay into a muon and a neutrino. The data are compared with the predictions from
DYNNLO using the CT14 NNLO PDF set. (right) The W boson charge asymmetry as a function of absolute
muon pseudorapidity. The data are compared to the central predictions from DYNNLO using a selection of
PDFs. The statistical uncertainties of the DYNNLO predictions are indicated by error bars. The ratios of the
data to the corresponding prediction are shown in the lower panel. From Ref. [16].
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7. Precision luminosity calibration

For precision measurements with well controlled systematics, such as those using leptonic
decays of the W and Z bosons and the top quark, a dominant systematic error arises from the
integrated luminosity calibration, which typically has a 2 - 2.5% uncertainty per year, going down
to 1.7-1.8% when all Run 2 data are combined. As illustrated in Fig. 11, this contribution would
become subdominant in most cases if a 1% precision per year could be reached, this is thus the
goal for the HL-LHC detector upgrades.
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Figure 11: (left) The relative statistical and systematic uncertainties from various sources for the abso-
lute Z production cross-section measurements in bins of the angular variable φ ∗ in the dimuon final state
in the CMS measurement [15]. The uncertainty in the trigger efficiency is included as part of the lep-
ton identification uncertainty. (middle) Integrated fiducial cross-sections times leptonic branching ratios of
σ(W± → `±ν`) vs. σ(Z → `+`−) published by ATLAS in Ref. [17]. The data ellipses illustrate the 68%
CL coverage for the total uncertainties (full green) and total excluding the luminosity uncertainty (open
black). Theoretical predictions based on various PDF sets are shown with open symbols of different colours.
The uncertainties of the theoretical calculations correspond to the PDF uncertainties only. (right) Estimated
relative change in the measured signal strength (µ), coming from the various experimental and theoretical
sources of uncertainties in the semi-leptonic top pair production analysis of CMS [18]. The open bars rep-
resent the values of the observed impact relative to the fitted signal strength. The values are compared to the
expectations (shaded bars) by performing the fit using simulated events with mt = 172.5 GeV. The various
contributions are shown from the largest to the smallest observed impact.

8. Summary

ATLAS and CMS has an extensive program of Standard Model physics measurements cover-
ing five center-of-mass energies of 2.76, 5.02, 7, 8 and 13 TeV that are compared to state-of-the-art
higher order pQCD calculations manifesting excellent agreement as illustrated in Fig. 12 (top).
While this paper concentrated on Drell-Yan type studies, there are many recent results on diboson
production, summarised for example in Fig. 12 (bottom) [19]. In particular, vector boson fusion
and scattering processes allow the measurement of anomalous electroweak triple and quartic gauge
boson couplings due to New Physics and test the cornerstone of the model, the Brout-Englert-Higgs
mechanism and its contribution to the regularisation of vector boson scattering amplitudes.
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section ratios to illustrate the comparison of CMS published and preliminary results to theoretical predictions
updated to latest NNLO calculations where available [19].
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The LHC became a precision machine reaching ±19 MeV uncertainty on the W boson mass
and±0.0004 on sin2

θ `
eff, the individual experiments approaching the LEP/SLD and Tevatron com-

bined precision. The contribution from the knowledge of parton distribution functions to the un-
certainties is important and often dominant. The LHC results improved our understanding of the
Standard Model and provide an essential test of its self-conistency, providing essential inputs to be
the SM fits, such as the measurements of the masses of the W boson, Higgs boson and top quark,
the forward-backward lepton asymmetries and the effective weak mixing angle presented here.
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