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We study the differential cross section in the unpolarized π−N Drell-Yan process, using trans-
verse momentum dependent factorization up to next-to-logarithmic order of QCD and extract the
nonperturbative Sudakov form factor for the pion in the evolution formalism of the unpolarized
TMD distribution function, by fitting the experimental data collected by the E615 Collabora-
tion at Fermilab. With the extracted Sudakov factor, we investigate the Sivers asymmetry in the
pion-induced single polarized Drell-Yan process in the theoretical framework of the transverse
momentum dependent factorization up to next-to-leading logarithmic order of QCD. Within the
TMD evolution formalism of parton distribution functions, the extracted nonperturbative Sudakov
form factor for the pion distribution functions as well as the one for the Sivers function of the
proton are applied to numerically estimate the Sivers asymmetry in the π−p Drell-Yan at the
kinematics of the COMPASS at CERN.
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1. Introduction

One of the main goals of the COMPASS Drell-Yan program is to measure the Sivers asymme-
try or the Sivers function with high precision. Sivers function [1] is a transverse momentum depen-
dent (TMD) parton distribution function (PDF) describing the asymmetric density of unpolarized
quarks inside a transversely polarized nucleon. It can give rise to the transversely single-spin asym-
metry in various high energy scattering processes. Because of its T-odd property, QCD predicts that
the sign of the Sivers function changes in SIDIS with respect to the Drell-Yan process [2, 3, 4]. The
verification of this sign change is one of the most fundamental tests of our understanding of the
QCD dynamics and the factorization scheme.

The main purpose of this work is to apply the TMD factorization to present a detailed phe-
nomenological analysis of the Sivers asymmetry in the pion induced Drell-Yan process that is
accessible at COMPASS [5]. Particularly, we take into account the TMD evolution for both the
pion distribution functions and the proton distribution functions. We perform the extraction of the
nonperturbative Sudakov form factor for the unpolarized pion distribution funtion f1,q/π(xπ ,k2

T )

to evolve f1,q/π(xπ ,k2
T ). As for the TMD evolution effect for the distributions of the proton, we

apply the existed parametrization of the nonperturbative Sudakov form factor for the unpolarized
distribution function and Sivers function.

2. Extracting the nonperturbative Sudakov form factor for the unpolarized pion
TMD distribution

In the unpolarized π−P Drell-Yan process π(Pπ)+ p(Pp)−→ γ∗(q)+X −→ l+(ℓ)+ l−(ℓ′)+
X , the differential cross section can be expressed as a b-dependent function (bbb is conjugate to qqq⊥
via Fourier Transformation) formulated in TMD factorization since the simplicity by introducing
the coordinate bbb-space and then transform back to transverse momentum space to represent the
experimental observables [6] d4σ

dQ2dyd2qqq⊥
= σ0

∫ d2b
(2π)2 ei⃗qqq⊥ ·⃗bbbW̃UU(Q;b)+YUU(Q,q⊥). σ0 =

4πα2
em

3NCsQ2 is

the cross section at tree level, structure function W̃ (Q;b) contains all-order resummation results and
dominates at low q⊥≪Q value, while the term YUU provides the necessary correction at moderate
q⊥ ∼Q values (we use the tilde to denote b-space terms). We will focus on the region q⊥≪Q and
neglect the Y -term.

W̃ (Q;b) can be expressed as [7]

W̃UU(Q;b) = HUU(Q; µ)∑
q,q̄

e2
q f̃ sub

1 q̄/π(xπ ,b; µ,ζF) f̃ sub
1q/p(xp,b; µ,ζF), (2.1)

where f̃ sub
q/H is the subtracted distribution function in b-space with the soft factor subtracted, HUU(Q; µ)

is the hard scattering factor, µ is renormalization scale in the case of collinear PDFs, and ζF de-
notes an energy scale related to the cutoff of the TMD distributions. The TMD evolution for the
ζF and µ dependence of TMD PDFs is encoded in Collins-Soper (CS) [8] and the renormalization
group equation. The overall solution structure for f̃1(x,b; µ,ζF) is the same as that for the Sudakov
form factor as exp(−S)1

f̃ (x,b,Q) = F × e−S× f̃ (x,b,µ). (2.2)

1Hereafter, we set µ =
√

ζF = Q and express f (x,b; µ = Q,ζF = Q2) as f (x,b;Q) for simplicity.

1



P
o
S
(
D
I
S
2
0
1
9
)
2
1
4

Sivers Asymmetry in πN Drell-Yan process at COMPASS within TMD factorization Xiaoyu Wang

Here, F is the hard factor dependent on the scheme that we choose. A parameter bmax with
typical value chosen around 1 GeV−1 is introduced to serve as boundary between the perturba-
tive and nonperturbative regions. b-dependent function b∗ = b/

√
1+b2/b2

max [8] guarantees b∗
is always at the perturbative region. In the small b region 1/Q≪ b≪ 1/Λ, the TMDs at fixed
energy µ can be expressed as a convolution of perturbatively calculable hard coefficients and the
corresponding collinear PDFs [9, 10] f1q/H(x,b; µ) = ∑iCq←i⊗ f i/H

1 (x,µ). f i/H
1 (ξ ,µ) is the cor-

responding collinear PDF at the energy scale µ , which can be a dynamic scale related to b∗ by
µb = c0/b∗, with c0 = 2e−γE and γE ≈ 0.577, the Euler Constant [9]. The Sudakov form factor
S in Eq. (2.2) can be separated into a perturbatively calculable part and a nonperturbative part
S = Spert + SNP. The perturbative part Spert can be expanded αs/π series, which we take up to
the accuracy of next-to-leading-logarithmic (NLL) order. For the nonperturbative form factor SNP,
a general parametrization associated with the TMD PDF for one of the initial protons has the

form [11] S f q/p
1

NP (Q,b) = g1
2 b2 + g2

2 ln b
b∗

ln Q
Q0

. The parameters are fitted from the nucleon-nucleon
Drell-Yan process data at the initial scale Q2

0 = 2.4 GeV2 and bmax = 1.5 GeV−1, with the results
being g1 = 0.212, g2 = 0.84 [11]. The nonperturbative Sudakov form factor for the pion TMD
distributions has never been obtained. Here we assume that it has the same structure as for the
proton TMD distributions, with parameters gπ

1 and gπ
2

S f q/π
1

NP = gπ
1 b2 +gπ

2 ln
b
b∗

ln
Q
Q0

. (2.3)

After dealing with the scheme dependence of the hard factors H, F and C, we can reach the
structure function in b-space as

W̃UU(Q;b) = e−Spert(Q2,b)−S
f q/π
1

NP (Q2,b)−S
f q/p
1

NP (Q2,b)∑
q,q̄

e2
qC′q←i⊗ fi/π−(x1,µb)C′q̄← j⊗ f j/p(x2,µb).

(2.4)

Performing the Fourier Transformation, we can get the differential cross section

d4σ
dQ2dyd2qqq⊥

= σ0

∫ ∞

0

dbb
2π

J0(q⊥b)×W̃UU(Q;b). (2.5)

Fitting the differential cross section with the E615 experimental data [12, 13] by minimizing
chisquare, we obtain the following values for the two parameters:

gπ
1 = 0.082±0.022, gπ

2 = 0.394±0.103, with χ2/d.o.f = 1.64. (2.6)

Applying the extracted S f q/π
1

NP , we calculate the transverse momentum spectrum of dimuon pairs
produced in unpolarized pion-nucleon Drell-Yan processes at the COMPASS kinematics and com-
pare with the COMPASS data [5] to verify our extraction, with the results plotted in Fig. 1. Com-
paring the two curves, we find that our theoretical estimate on the q⊥ distribution of the dimuon
agrees with the COMPASS data fairly well in the small q⊥ region, in both the shape and the size.
This validates our extraction of the nonperturbative Sudakov form factor for the pion distribution
f1π , within the TMD factorization and indicates the framework applied can also be extended to the
study of the azimuthal asymmetries in the πN Drell-Yan process.

2



P
o
S
(
D
I
S
2
0
1
9
)
2
1
4

Sivers Asymmetry in πN Drell-Yan process at COMPASS within TMD factorization Xiaoyu Wang

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

 Experiment measurement
 Theoretical estimate
 

 

 

COMPASS 2015 -NH
3
 data

GeV 8.5<M<GeV 4.3

)GeV(q

 d
q

1 
d

(G
eV

-1
)

Figure 1: The transverse spectrum of lepton pair production in the unpolarized pion-nucleon Drell-Yan
process, with an NH3 target at COMPASS. The dashed line is our theoretical calculation using the extract-
ed Sudakov form factor for the pion TMD PDF. The solid line shows the experimental measurement at
COMPASS [5].

3. Sivers Asymmetry in the pion induced Drell-Yan process at COMPASS

The transverse single spin asymmetry for the unpolarized π− scattering off the transverse-

ly polarized proton Drell-Yan process can be defined as AUT = d4∆σ
dQ2dyd2qqq⊥

/
d4σ

dQ2dyd2qqq⊥
[14] with

d4σ
dQ2dyd2qqq⊥

for the spin-averaged differential cross section written in Eq. (2.5), while d4∆σ
dQ2dyd2qqq⊥

for
the spin-dependent differential cross section, which can be expressed similar to the unpolarized
case as d4∆σ

dQ2dyd2qqq⊥
= σ0εαβ

⊥ Sα
⊥
∫ d2b

(2π)2 ei⃗qqq⊥ ·⃗bbbW̃ β
UT (Q;b)+Y β

UT (Q,q⊥) [15, 14, 16]. Similarly, we will

only consider the W̃ β
UT -terms, which can be written according to the TMD factorization as [6, 8]

W̃ α
UT (Q;b) = HUT (Q; µ)∑

q,q̄
e2

q f̃1,q̄/π(xπ ,b; µ,ζF) f̃⊥α(DY)
1T,q/p (xp,b; µ,ζF). (3.1)

f̃1,q/π and f̃⊥α
1T,q/p stand for the unpolarized distribution function of pion meson and the Siver-

s function for proton in the b-space with the soft factor subtracted in the definition of the T-
MD distribution functions, respectively. The latter one has the definition as f̃⊥α(DY)

1T q/p (x,b; µ) =∫
d2kkk⊥e−i⃗kkk⊥ ·⃗bbb kα

⊥
Mp

f⊥(DY)
1T,q/p (x,kkk⊥; µ) [14]. The superscript DY denotes that the quark Sivers function

is the one in the Drell-Yan process, and it satisfies the relation f⊥(DY)
1T,q/p = − f⊥(DIS)

1T,q/p . The solution
structure of the evolution equations for the Sivers function is exactly the same as that in Eq. (2.2)
with the same perturbative Sudakov form factor. The nonperturbative Sudakov form factor SNP has
been proposed in Ref. [14] for the Sivers function as SSiv

NP =
(

gSiv
1 +gSiv

2 ln Q
Q0

)
b2 with gSiv

1 rele-

vant to the averaged intrinsic transverse momenta squared gSiv
1 = ⟨k2

s⊥⟩Q0/4 = 0.071GeV2 and gSiv
2

being 1
2 g2 = 0.08GeV2. Similar to the unpolarized distribution function in the low b region, the

Sivers function f̃⊥α(DY)
1T q/p can be also expressed as the convolution of perturbatively calculable hard

coefficients and the corresponding collinear correlation functions as [16, 15]

f̃⊥α(DY)
1T q/p (x,b; µ) = (

−ibα

2
)∑

i
∆CT

q←i⊗ f (3)i/p(x
′,x′′; µ). (3.2)

∆CT
q←i stands for the hard coefficients and f (3)i/p(x

′,x′′) denotes the twist-three quark-gluon-quark or
trigluon correlation functions, among which the Qiu-Sterman function Tq,F(x,x) [17, 18, 19] may
provide the main contribution to the single spin asymmetry. It is proportional to the first transverse

3



P
o
S
(
D
I
S
2
0
1
9
)
2
1
4

Sivers Asymmetry in πN Drell-Yan process at COMPASS within TMD factorization Xiaoyu Wang

moment of the Sivers function f⊥(1)1T q/p(x) [16, 15] Tq,F(x,x) = 2Mp f⊥(1)DY
1T q/p (x). Consistent with the

choice of the COMPASS experiments [5] and solving the scheme-dependent problem on the hard
scattering factor, the spin-dependent differential cross section can be rewritten as

d4∆σ
dQ2dyd2qqq⊥

=
σ0

4π

∫ ∞

0
dbb2J1(q⊥b) ∑

q,i, j
e2

q∆CT
q←i⊗Ti,F(xp,xp; µb)Cq̄← j⊗ f1, j/π(xπ ,µb)e

−
(

SSiv
NP+S

f1q/π
NP +SP

)
.

(3.3)

We adopt the NLO set of the CT10 parametrization [20] (central PDF set) and the NLO SMRS
parametrization [21] for the unpolarized distribution function f1(x) of the proton and pion meson,
respectively. For the Qiu-Sterman functions Tq,F(x,x; µ), we adopt the parameterization [14] ex-
tracted from the Sivers asymmetry in SIDIS. There are two different approaches adopted to deal
with the scale dependence of Tq,F for comparison: set 1 assumes that Tq,F is proportional to the
usual unpolarized collinear PDF at any scale, namely, Tq,F follows the DGLAP evolution as that
of f1, like the choice in Ref. [14], while set 2 adopts the parameterizations at the initial scale
(Q2

0 = 2.4 GeV2) then evolves it to another scale Q through QCD evolution via an approximate
evolution kernel (only including the homogenous terms) PQS

qq ≈ P f1
qq− Nc

2
1+z2

1−z −Ncδ (1− z).
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Figure 2: The Sivers asymmetry for π− scattering off transversely polarized proton Drell-Yan process. The
dashed lines represent Sivers asymmetry with the Qiu-Sterman functions Tq,F(x,x;Q) being proportional to
the unpolarized PDF f1(x,Q) (Set 1). The solid lines depict Sivers asymmetry considering Qiu-Sterman
functions evolving through the splitting function (Set 2).

The numerical estimate of the Sivers asymmetry ASiv
UT in the π−p Drell-Yan at the kinematics

of COMPASS is plotted in Fig. 2. As a comparison, the experimental data measured by the COM-
PASS Collaboration [5] with error bars is also shown in Fig. 2. One can find that in all the cases
the Sivers asymmetry in the π−p Drell-Yan from our calculation is positive with the size around
0.05 to 0.10. It is consistent with the COMPASS measurement shown in Fig.5 of Ref. [5] within
the uncertainties of the asymmetry. We also find that the asymmetry from the Sivers function in set
2 is more sizable than the one from set 1, and is more closer to the central values of the asymmetry
measured by COMPASS. This is because that the Sivers function in set 2 is larger than the Sivers
function in set 1. Furthermore, compared to the asymmetry from set 1, the asymmetry from set
2 has a fall at larger q⊥, which is more compatible to the shape of q⊥-dependent asymmetry of
measured by the COMPASS Collaboration.

4. Conclusion

In this work, we applied the formalism of the TMD factorization to study the Sivers asymmetry
in the pion induced Drell-Yan process that is accessible at COMPASS. We took into account the
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TMD evolution of the pion distribution functions as well as the proton distributions. For the former
one, we parameterized the Sudakov form factor in a form analogous to that of the proton TMD
distribution and performed a fit using the experimental data at E615. Adopting the extracted results,
we calculated the transverse momentum spectrum of dimuon pairs produced in unpolarized pion-
nucleon Drell-Yan processes at the COMPASS kinematics, and compared it with the COMPASS
data to verify our extraction. As for the TMD evolution of the proton distributions, we adopted
the existed parametrization of the nonperturbative Sudakov form factor. We applied two different
ways to treat the energy dependence of the Qiu-Sterman function which is proportional to first k⊥
moment of the Sivers function. We then calculated the Sivers asymmetry in π p Drell-Yan process
at COMPASS. We find that the Sivers asymmetry calculated from the TMD evolution formalism
is consistent with the COMPASS measurement. Furthermore, different treatments on the scale
dependence of the Qiu-Sterman function yield different sizes and shapes of the asymmetries, which
shows that the scale dependence of the Qiu-Sterman function will play a role in the interpretation
of the experimental data, and it should also be considered in the phenomenological studies.
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