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Proceeding based on a work [1] with Stephen Angus and Kyoungho Cho

— Contents —

1. Core Idea

2. DFT as Stringy Gravity

3. Derivation of the Einstein Double Field Equations

4. DFT as Modified Gravity

To the memory of Cornelius Sochichiu

Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity"
(CORFU2018)
31 August - 28 September, 2018
Corfu, Greece

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:park@sogang.ac.kr


P
o
S
(
C
O
R
F
U
2
0
1
8
)
1
4
5

Einstein Double Field Equations, GAB = 8πGTAB Jeong-Hyuck Park

1. Core Idea

String theory may predict its own gravity rather than General Relativity. In GR, the metric is the
only geometric and gravitational field, whereas in string theory the closed-string massless NS-NS
sector comprises a skew-symmetric B-field and the string dilaton in addition to the Riemannian
metric. O(D,D) T-duality rotations transform them into each other [2, 3]. This hints at a natu-
ral augmentation of GR: upon treating the whole closed-string massless NS-NS sector as stringy
graviton fields, Double Field Theory (DFT) [4–8] may evolve into Stringy Gravity. In terms of an
O(D,D) covariant stringy differential geometry beyond Riemann, or the so-called semi-covariant
formalism [9, 10], we present the definitions of the off-shell conserved stringy Einstein curvature
tensor [11] and the on-shell conserved stringy Energy-Momentum tensor [1]. Equating them as
prescribed by the action principle of DFT coupled to generic matter, all the equations of motion of
the closed string massless NS-NS sector are unified into a single expression,

GAB = 8πGTAB , (1.1)

which carry O(D,D) vector indices. As they correspond to the O(D,D) completion of the (undou-
bled) Einstein Field Equations, we dub them the Einstein Double Field Equations [1].

2. DFT as Stringy Gravity – Essential Constituents

• Built-in symmetries & Notation:

– O(D,D) T-duality

– DFT diffeomorphisms (ordinary diffeomorphisms plus B-field gauge symmetry)

– Twofold local Lorentz symmetries, Spin(1,D−1)×Spin(D−1,1)

⇒ Two locally inertial frames exist separately for the left and the right modes.

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =


0 1

1 0



p,q, · · · Spin(1,D−1) vector ηpq = diag(−++ · · ·+)

α,β , · · · Spin(1,D−1) spinor Cαβ , (γ p)T =Cγ pC−1

p̄, q̄, · · · Spin(D−1,1) vector η̄ p̄q̄ = diag(+−−·· ·−)

ᾱ, β̄ , · · · Spin(D−1,1) spinor C̄
ᾱβ̄

, (γ̄ p̄)T = C̄γ̄ p̄C̄−1
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The O(D,D) metric JAB divides doubled coordinates into two: xA = (x̃µ ,xν),∂A = (∂̃ µ ,∂ν).

• Doubled-yet-gauged spacetime:
The doubled coordinates are gauged through a certain equivalence relation [12],

xA ∼ xA +∆A , ∆A = Φ∂ AΨ ,

where, with ∂ A = J AB∂B, ∆A is derivative-index-valued for arbitrary functions, Φ,Ψ, appearing
in DFT. Each equivalence class, or gauge orbit in RD+D, then corresponds to a single physical point
in RD. This implies, and also is implied by, a section condition,

∂A∂
A = 0 ,

which can be conveniently solved by switching off the tilde-coordinate dependence, i.e. ∂̃ µ ≡ 0.

In fact, if we gauge the infinitesimal coordinate one-form, dxA, explicitly introducing a derivative-
index-valued auxiliary gauge potential,

dxA −→ DxA = dxA−A A , A A
∂A = 0 ,

it is possible to define an O(D,D) and DFT-diffeomorphism covariant ‘proper length’ in the dou-
bled space through a path integral [13], and accordingly string worldsheet actions which are fully
covariant with respect to symmetries like O(D,D) T-duality, Weyl symmetry, target as well as
worldsheet diffeomorphisms [14–16] (c.f. [17–22]), and κ-symmetry [23] (3.2).

• Stringy graviton fields (closed-string massless NS-NS sector) as represented by
{

d,VMp,V̄Nq̄
}

:
The defining properties of the DFT metric are

HMN = HNM , HK
LHM

NJLN = JKM , (2.1)

from which one can set a pair of symmetric and orthogonal projectors,

PMN = PNM = 1
2(JMN +HMN) , PL

MPM
N = PL

N ,

P̄MN = P̄NM = 1
2(JMN−HMN) , P̄L

MP̄M
N = P̄L

N , PL
MP̄M

N = 0 .

Taking the “square roots" of the projectors, we acquire a pair of DFT vielbeins,

PMN =VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄η̄ p̄q̄ ,

satisfying their own defining properties,

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 ,
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which are — as the left inverse of a matrix coincides with the right inverse — equivalent to

VM
pVN p +V̄M

p̄V̄N p̄ = JMN .

The most general solutions to (2.1) can be classified by two non-negative integers (n, n̄) [24],

HMN =

 Hµν −Hµσ Bσλ +Y µ

i X i
λ
− Ȳ µ

ı̄ X̄ ı̄
λ

BκρHρν +X i
κY ν

i − X̄ ı̄
κȲ ν

ı̄ Kκλ −BκρHρσ Bσλ +2X i
(κBλ )ρY ρ

i −2X̄ ı̄
(κBλ )ρȲ ρ

ı̄

 ,

(2.2)
where 1≤ i≤ n, 1≤ ı̄≤ n̄ and

HµνX i
ν = 0 , Hµν X̄ ı̄

ν = 0 , KµνY ν
i = 0 , KµνȲ ν

ı̄ = 0 , HµρKρν +Y µ

i X i
ν + Ȳ µ

ı̄ X̄ ı̄
ν = δ

µ

ν .

The corresponding coset is, with D = t + s+n+ n̄,

O(D,D)

O(t +n,s+n)×O(s+ n̄, t + n̄)
,

which has the dimension, D2− (n− n̄)2 [25], while HM
M = 2(n− n̄) is O(D,D) invariant.

Upon the generic (n, n̄) background, strings become chiral and anti-chiral over the n and n̄ direc-
tions:

X i
µ∂+xµ = 0 , X̄ ı̄

µ∂−xµ = 0 .

Examples include Riemannian geometry as (0,0) where Kµν = gµν , Hµν = gµν , Newton–Cartan
gravity as (1,0), Gomis–Ooguri or Newton–Cartan non-relativistic strings as (1,1) [26–29], Carroll
gravity as (D−1,0), and Poisson–Lie dual (1,1) backgrounds [30]. In particular, the extreme case
of (D,0) corresponds to the maximally non-Riemannian, perfectly O(D,D) symmetric, vacuum
geometry of DFT, where the DFT metric coincides with the O(D,D) metric, HAB = JAB. Intrigu-
ingly then, the Riemannian as well as partially non-Riemannian, n+ n̄ < D, spacetimes ‘emerge’
after spontaneously breaking the O(D,D) symmetry with the component fields in (2.2) interpreted
as Goldstone bosons [27]. Furtheremore, the maximally non-Riemannian (D,0) background does
not allow any linear fluctuation: from the defining property (2.1), any linear fluctuation of the DFT
metric must satisfy δHA

BHB
C +HA

BδHB
C = 0, and thus if HAB = JAB , we have δHAB = 0 .

Thus, taken as an internal space, it realizes a graviscalar-moduli-free Scherk–Schwarz twistable
Kaluza–Klein reduction of DFT, in fact, to heterotic supergravity [31] .

• Covariant derivative:
The ‘master’ covariant derivative,

DA = ∂A +ΓA +ΦA + Φ̄A ,

is characterized by compatibilities with the whole NS-NS sector,

DAd = 0 , DAVBp = 0 , DAV̄Bp̄ = 0 ,

3
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as well as with the kinematical constant metrics,

DAJBC = 0 , DAηpq = 0 , DAη̄ p̄q̄ = 0 , DACαβ = 0 , DAC̄
ᾱβ̄

= 0 .

The DFT-Christoffel symbols are [10]

ΓCAB = 2(P∂CPP̄)[AB]+2
(
P̄[ADP̄B]

E −P[ADPB]
E
)

∂DPEC

−4
(

1
PMM−1 PC[APB]

D + 1
P̄MM−1 P̄C[AP̄B]

D
)(

∂Dd +(P∂ EPP̄)[ED]

)
,

and the spin connections are

ΦApq =V B
p(∂AVBq +ΓAB

CVCq) , Φ̄Ap̄q̄ = V̄ B
p̄(∂AV̄Bq̄ +ΓAB

CV̄Cq̄) .

In Stringy Gravity there are no normal coordinates where ΓCAB would vanish point-wise: the Equiv-
alence Principle does not hold for strings, or extended objects. However, when the formalism is
applied and restricted to the case of point particles, ΓCAB reduces to the ordinary Christoffel sym-
bols and the Equivalence Principle is restored.

• Scalar and ‘Ricci’ curvatures:
The semi-covariant Riemann curvature in Stringy Gravity is defined by

SABCD := 1
2

(
RABCD +RCDAB−Γ

E
ABΓECD

)
,

where RCDAB = ∂AΓBCD−∂BΓACD +ΓACEΓB
E

D−ΓBCEΓA
E

D (the “field strength" of ΓCAB).
The completely covariant ‘Ricci’ and scalar curvatures are, with SAB = SACB

C,

Spq̄ :=V A
pV̄ B

q̄SAB , S(0) :=
(
PACPBD− P̄ACP̄CD

)
SABCD .

• DFT minimally coupled to matter:
While e−2dS(0) corresponds to the original DFT Lagrangian density [4, 6], or the ‘pure’ Stringy
Gravity, the master covariant derivative fixes its minimal coupling to extra matter fields, e.g. type
II D = 10 maximally supersymmetric DFT [32],

LtypeII = e−2d


1
8 S(0)+

1
2 Tr(FF̄ )+ iρ̄Fρ ′+ iψ̄p̄γqF γ̄ p̄ψ ′q + i 1

2 ρ̄γ pDpρ− i 1
2 ρ̄ ′γ̄ p̄Dp̄ρ ′

−iψ̄ p̄Dp̄ρ− i 1
2 ψ̄ p̄γqDqψ p̄ + iψ̄ ′pDpρ ′+ i 1

2 ψ̄ ′pγ̄ q̄Dq̄ψ ′p

 ,

(2.3)
or the Standard Model coupled to DFT [33],

LSM = e−2d


1

16πGN
S(0)+∑V Tr(Fpq̄F pq̄)+∑ψ ψ̄γaDaψ +∑ψ ′ ψ̄

′γ̄ āDāψ ′

−H AB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u+ ye l̄′·φ e′

 . (2.4)

4
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The former Lagrangian (2.3) was constructed to the full i.e. quartic order in fermions. It unifies IIA
and IIB supergravities as well as “Gomis–Ooguri supergravity" as different solution sectors. The
latter Lagrangian (2.4) may put quarks and leptons in two distinct spin group sectors, i.e. Spin(1,3)
vs. Spin(3,1). Every single term in the above two Lagrangians is completely invariant with respect
to the diffeomorphisms, twofold local Lorentz symmetries, and O(D,D) T-duality.

3. Derivation of the Einstein Double Field Equations

We consider a general action for Stringy Gravity (i.e. DFT) coupled to generic matter fields, ϒa,
for example (2.3), (2.4). The variation of the action gives

δ

∫
e−2d

[
1

16πG S(0)+Lmatter

]
=
∫

e−2d
[

1
4πGV̄ Aq̄δVA

p(Spq̄−8πGKpq̄)− 1
8πG δd(S(0)−8πGT(0))+δϒa

δLmatter

δϒa

]
=
∫

e−2d
[

1
8πG ξ BDA {GAB−8πGTAB}+(L̂ξ ϒa)

δLmatter

δϒa

]
,

where the second line is for generic variation and the third line is specifically for diffeomorphic
transformation. While deriving the above, one is naturally led to define

Kpq̄ :=
1
2

(
VAp

δLmatter

δV̄A
q̄ −V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d×

δ
(
e−2dLmatter

)
δd

,

and subsequently also the stringy Einstein curvature, GAB, and Energy-Momentum tensor, TAB ,

GAB = 4V[A
pV̄B]

q̄Spq̄− 1
2JABS(0) , DAGAB = 0 (off-shell) ,

TAB := 4V[A
pV̄B]

q̄Kpq̄− 1
2JABT(0) , DAT AB = 0 (on-shell) ,

which satisfy GA
A =−DS(0), TA

A =−DT(0). Therefore, the equations of motion of the stringy gravi-
ton fields are unified into a single expression, the Einstein Double Field Equations (1.1).

Restricting to the (0,0) Riemannian background, the Einstein Double Field Equations reduce to

Rµν +25µ(∂νφ)− 1
4 Hµρσ Hν

ρσ = 8πGK(µν) ,

5ρ
(
e−2φ Hρµν

)
= 16πGe−2φ K[µν ] ,

R+42φ −4∂µφ∂
µ

φ − 1
12 Hλ µνHλ µν = 8πGT(0) ,

which imply the conservation law, DAT AB = 0, now given explicitly by

∇µK(µν)−2∂ µφ K(µν)+
1
2 Hν

λ µK[λ µ]− 1
2 ∂νT(0) = 0 , ∇µ

(
e−2φ K[µν ]

)
= 0 .

The Einstein Double Field Equations also govern the dynamics of other non-Riemannian cases,
(n, n̄) 6= (0,0), where the invertible Riemannian metric, gµν , cannot be defined.

5
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Examples

– Pure Stringy Gravity with the O(D,D) invariant cosmological constant:

1
16πG e−2d (S(0)−2ΛDFT) , Kpq̄ = 0 , T(0) =

1
4πG ΛDFT .

– RR sector, represented by a Spin(1,9)×Spin(9,1) bi-spinorial potential, C α
ᾱ :

LRR = 1
2 Tr
(
FF̄

)
, Kpq̄ =−1

4 Tr
(
γpF γ̄q̄F̄

)
, T(0) = 0 ,

where

F = D+C = γ
pDpC + γ

(11)Dp̄C γ̄
p̄ ,

which is the RR flux set by an O(D,D) covariant ‘H-twisted’ cohomology, (D+)
2 = 0, and

F̄ = C̄−1F TC is its charge conjugate [32].

– Scalar field :

LΦ =−1
2H MN∂MΦ∂NΦ− 1

2 m2
Φ
Φ2 , Kpq̄ = ∂pΦ∂q̄Φ , T(0) =−2LΦ .

– Spinor field:

Lψ = ψ̄γ pDpψ +mψψ̄ψ , Kpq̄ =−1
4(ψ̄γpDq̄ψ−Dq̄ψ̄γpψ) , T(0) = 0 .

– Point particle:

e−2dLparticle =
∫

dτ
[

e−1 DτyADτyBHAB(x)− 1
4 m2e

]
δ

D(x− y(τ)
)
, (3.1)

Kpq̄ =−
∫

dτ 2e−1 (DτyAVAp)(DτyBV̄Bq̄)e2d(x)
δ

D(x− y(τ)
)
, T(0) = 0 .

– Green-Schwarz superstring (κ-symmetric) :

e−2dLstring =
1

4πα ′

∫
d2

σ

[
−1

2

√
−hhi j

Π
M
i Π

N
j HMN− ε

i jDiyM(A jM− iΣ jM)
]

δ
D(x− y(σ)

)
,

(3.2)

Kpq̄(x) = 1
4πα ′

∫
d2σ
√
−hhi j(ΠM

i VMp)(Π
N
j V̄Nq̄)e2dδ D

(
x− y(σ)

)
, T(0) = 0 ,

where ΣM
i = θ̄ γM∂iθ + θ̄ ′γ̄M∂iθ

′ and ΠM
i = ∂iyM−A M

i − iΣM
i [23].

6
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4. DFT as Modified Gravity

As DFT evolves into Stringy Gravity, which appears to, at least conceptually, differ from Gen-
eral Relativity, it should be of interest, if not the duty of a physicist, to investigate how DFT as a
graviational theory modifies GR. Since the stringy Energy-Momentum tensor has D2 + 1 compo-
nents, and this is certainly larger than 1

2 D(D+ 1) which is the number of components in GR, it
is natural to expect that the gravitational phenomena are richer in Stringy Gravity than in General
Relativity. As a first step to verify this, henceforth we focus on the most general, static, spherically
symmeric, asymtotically flat, Riemannian, regular ‘star-like’ solution to the D = 4 Einstein Double
Field Equations,

GAB =


8πGTAB for r ≤ rc (inside the stringy star)

0 for r > rc (ourside) .

(4.1)

Outside the stringy star, we have the spherical ‘vacuum’ geometry [34, 35],

e2φ = γ+

(
r−α

r+β

) b√
a2+b2

+ γ−

(
r+β

r−α

) b√
a2+b2

, H(3) = hsinϑ dt ∧dϑ ∧dϕ ,

ds2 = e2φ

[
−
(

r−α

r+β

) a√
a2+b2 dt2 +

(
r+β

r−α

) a√
a2+b2 {dr2 +(r−α)(r+β )dΩ2

}]
,

(4.2)

where a,b,h,α,β are constant parameters satisfying the constraint, a2 + b2 = (α + β )2 ; we let
γ± := 1

2(1±
√

1−h2/b2) ; and ds2 is given in string frame. Thus there are four independent free
parameters in the spherical vacuum geometry, in contrast to the Schwarzschild geometry which
possesses only one free parameter, i.e. mass. The Einstein Double Field Equations (4.1) then
determine — and hence reveal the physical meaning of — all of these “free" parameters in terms
of the Energy-Momentum tensor inside the stringy star, for example,

a =
∫ rc

0
dr
∫

π

0
dϑ

∫ 2π

0
dϕ e−2d

[
1

4π
HrϑϕHrϑϕ +2G

(
Kr

r +Kϑ
ϑ +Kϕ

ϕ −Kt
t −T(0)

)]
.

The O(D,D) symmetric doubled-yet-gauged particle action (3.1) implies that a point-like particle
should follow a geodesic defined in string frame [35], rather than in Einstein frame.1 In terms of
the areal radius, R, which normalizes the angular part of the metric, ds2 = gttdt2+gRRdR2+R2dΩ2,
the orbital velocity of a point particle probe can be computed from

Vorbit =

√
R

dΦNewton

dR
,

ΦNewton =−1
2(1+gtt) =−

MG
R

+

(
2b2−h2 +2ab

√
1−h2/b2

a2 +b2−h2 +2ab
√

1−h2/b2

)(
MG
R

)2

+ · · · ,

1However, this is not an S-duality invariant statement. The author would like to thank Chris Hull for this remark.
Our discussion is thus restricted to the implications of O(D,D) T-duality rather than S- or U-dualities.

7
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where the ellipses in (4) denote higher order terms in MG
R , and the mass is given by

MG = 1
2

(
a+b

√
1−h2/b2

)
=
∫

∞

0
dr
∫

π

0
dϑ

∫ 2π

0
dϕ e−2d (−2GKt

t + 1
8π

∣∣HtϑϕHtϑϕ
∣∣) . (4.3)

Thus, in terms of the dimensionless radius, R/(MG), normalized by the mass times the Newton

constant, the orbital motion becomes Keplerian, i.e. Vorbit '
√

MG
R , for large R/(MG), while it is

non-Keplerian for small R/(MG). That is to say, Stringy Gravity modifies General Relativity at
“short" dimensionless scales. In fact, depending on the parameters, the gravitational force can even
be repulsive at “short" scale. This might shed new light upon the dark matter/energy problems, as
they arise essentially from “short" dimensionless scale observations:

‘Uroboros’ spectrum of the dimensionless radial variable normaized by mass in natural units [13, 35].
The observations of stars and galaxies far away may reveal the short-distance nature of gravity.

Repulsive gravitational force at short scale may explain the acceleration of the Universe.

Finally, we speculate that electric H-flux may be dark matter, since it contributes to the mass for-
mula (4.3) while it decouples from point particles (3.1). We call for verification.

Dedication

I would like to dedicate this humble writing to the memory of Cornelius Sochichiu who has taught
me how to balance life and physics until his last moment.
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