
P
o
S
(
T
W
E
P
P
2
0
1
8
)
0
6
9

An automated pipeline for continuous integration of
FPGA firmware and software for the LHCb Run3
upgrade

Paolo Durante∗a, Luis Granado Cardosoa, Joao Vitor Viana Barbosaa, Federico
Alessioa and Guillaume Voutersb

aCERN (European Organization for Nuclear Research)
bLAPP (Laboratoire d’Annecy-le-Vieux de Physique des Particules)
E-mail: paolo.durante@cern.ch

The readout system for the upcoming Run3 upgrade of the LHCb experiment at CERN is based
around a common readout board called PCIe40. By reconfiguring the onboard FPGA with dedi-
cated firmware, this common board can be used to serve very different roles within the upgraded
LHCb experiment. A continuous integration pipeline was implemented in order to automatically
cross-validate the tight interaction between the different FPGA firmwares and the associated DAQ
and control software, all being actively developed in parallel. We present challenges and solutions
for applying this kind of practices, traditionally limited mainly to the field of software engineering,
also to hardware-in-the-loop validation of FPGA firmware and SCADA-based control systems.

Topical Workshop on Electronics for Particle Physics (TWEPP2018)
17-21 September 2018
Antwerp, Belgium

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:paolo.durante@cern.ch


P
o
S
(
T
W
E
P
P
2
0
1
8
)
0
6
9

Continuous integration of FPGA firmware and software for the LHCb Run3 upgrade Paolo Durante

1. Introduction

The LHCb Online group provides engineering support and development to the different LHCb
subdetectors, mainly in relation to readout board firmware, low-level software for frontend con-
figuration and data acquisition, and control system components. Given the relatively small size
of the core developer group (half a dozen people), the very hetereogeneous nature of the different
subsystems to be supported, and the constant evolution of the needs of subdetector groups under
very different circumstances (ranging from frontend validation, to test beams, to detector assembly
and final commissioning), a clear need emerged for a way to reduce the time and effort required
to detect, reproduce and correct integration issues during the development cycle. The following
sections describe, in order, the different phases of this cycle.

2. Development

In addition to the core team, other members of the LHCb collaboration from several external
institutes also actively participate in the development. The benefits of automated integration testing
are apparent in such a geographically distributed structure, since issues like failing builds of failing
tests can be flagged and reported automatically to the participants regardless of their location or
timezone. Source control is organized using git, and git repositories are managed through the
GitLab infrastructure provided by the IT department at CERN [1].

3. Code review

The readout FPGA firmware is organized into logically separate git submodules, allowing
maintainers of the corresponding pieces of functionality to version their code independently. A
dedicated top-level repository tracks the state of the firmware submodules, and provides a unified
location from which different FPGA firmwares can be built. When developers are ready to integrate
their changes in the mainline repository, helper scripts are provided that will automatically update
the desired submodules and submit a merge request for review. Readout- and control-software
organization follows a similar layout, spanning across multiple repositories, simplified by the ab-
sence of submodules and submodule-tracking scripts (as they can be built either independently or
incrementally, unlike on the FPGA).

4. Build

Submission of a firmware merge request automatically triggers a dedicated GitLab continuous
integration pipeline. This pipeline executes Questa RTL simulations according to several prede-
fined firmware configurations and, if successful, executes the Quartus FPGA synthesis flow for
each of the different applications where the common readout boards are used throughout LHCb.
The flow automatically targets all required hardware platforms, including legacy (but still used and
maintained) revisions of our readout boards (figures 1, 2), in addition to the final PCIe40 design to
be used in Run3 (figure 3)[2]. For each board type, FPGA synthesis needs to be repeated for both
the data plane and the control plane of each of the six LHCb subdetectors. Given the complex-
ity of modern high-capacity FPGAs, producing all required permutations requires of the order of

1



P
o
S
(
T
W
E
P
P
2
0
1
8
)
0
6
9

Continuous integration of FPGA firmware and software for the LHCb Run3 upgrade Paolo Durante

100 hours of computation. Distributing synthesis jobs across a small computing cluster (~5 nodes
throughout 2017 and 2018, to be upgraded at the end of 2018) reduced this turnaround to a single
day, which was still unacceptable. As a further optimization, our pipeline keeps the result of each
synthesis job in an internal cache and tracks changes in all firmware components across succes-
sive invocations of the same job configurations. This automated dependency tracking is used to
selectively trigger only pipeline jobs whose dependencies have changed. For example: changes to
a specific subdetector implementation, or to board-specific logic, will result in repeating only the
jobs associated to that specific subdetector, or that specific board, respectively. In our experience,
these localized changes tend to be the most common as the project matures, in these cases our op-
timization can shorten a day-long build down to about ten hours, suitable for overnight execution
and next-day evaluation. A similar pipeline was implemented to automate the build of the readout
and control software as well, however in this case the requirements are much less demanding, both
in terms of runtime (minutes in place of hours) and of computational resources (virtualized Docker
containers in place of dedicated hardware with fast CPUs and tens of gigabytes of main memory).

Figure 1: Legacy platform

• Stratix V FPGA

• 24 optical FE links

• 10G Ethernet readout

Figure 2: Development board

• Arria X FPGA

• 48 optical FE links

• PCI Express readout

Figure 3: Final version

• Arria X FPGA

• 48 optical FE links

• PCI Express readout

5. Packaging and reporting

The build process can either fail (in which case developers are automatically alerted of the
issue), or succeed and produce a series of outputs. For each operating system and architecture to
be supported, the software pipeline will generate:

• Documentation

• Software executables and reusable software libraries

• Loadable kernel modules to interface the FPGA over PCI Express, or to emulate the FPGA

• JCOP components to be installed in the control system

Likewise, the firmware pipeline produces:

2



P
o
S
(
T
W
E
P
P
2
0
1
8
)
0
6
9

Continuous integration of FPGA firmware and software for the LHCb Run3 upgrade Paolo Durante

• Documentation

• SRAM Object Files to reconfigure the readout board FPGA at runtime

• Programmable Object Files to persist the FPGA firmware on the readout board flash memory

• Firmware quality reports

Firmware reports are generated by analyzing the internal Quartus result database and are stored
in JSON format to be easily imported by dedicated scripts for plotting and analysis. The reports
include metrics such as:

• FPGA resource utilization (ALMs, BRAMs, DSPs, HSSIs)

• System resource utilization (CPU time, wall time, memory)

• Critical path and Total Negative Slack for all clocks and all timing corners

Finally, both software and firmware are automatically packaged in RPM format and published to
dedicated RPM repositories for distribution, as is customary on all Linux installations deployed
at CERN. The repositories provide two distinct release channels. The unstable channel reserved
for new features and fixes undergoing testing, and the stable channel meant for validated releases
ready for use by the rest of the LHCb collaboration.

6. Deployment

While using RPMs as a distribution mechanism simplifies update management and cross-
package compatibility checking, it is not sufficient to fully describe (and reproduce, in case of
issues) a running system that might be deployed in a distant institute or production site. To improve
traceability, dedicated tools were implemented to extract additional information from a running
system, including:

• JCOP components installed in the control system and their versions

• Readout hardware being used and state of the corresponding kernel drivers

• Readout firmware being used, including checksum, timestamp, toolchain version, git hashes
and versions of all the constituent submodules

The pieces of information in the last item of the list are automatically embedded in the FPGA
images during synthesis, and then retrieved in the field from a programmed FPGA over USB or
PCI Express.

7. Testing

The LHCb control system is based on the Siemens WinCC Open Architecture [3]. WinCC
OA is used for configuring, monitoring and controlling the state of a system as small as a tabletop
setup in a lab or a testbeam, or as big as the entirety of LHCb. Successfull operation of either

3



P
o
S
(
T
W
E
P
P
2
0
1
8
)
0
6
9

Continuous integration of FPGA firmware and software for the LHCb Run3 upgrade Paolo Durante

kind of setup requires all hardware, firmware and software components to correctly integrate with
each other. In order to validate this kind of integration we have instrumented WinCC OA with
dedicated tools and scripts, implementing an automated test harness. A test harness consists of
a linear sequence of steps, each step representing operations that an operator or an automatic run
control would execute on the system (for example: programming a readout board, synchronizing all
its clocks sources, configuring its optical links, configuring some frontends, starting a run, reading
out data, and so on...). The process generates a report in TAP format. The "Test Anything Protocol"
(TAP) is a formal specification used for communication between unit tests and a test harness.

8. Acceptance

After testing (both manual and scripted), maintainers can decide to accept currently unstable
versions (thus promoting them to become the new stable releases) for the firmware and software
modules that have been modified since the last release cycle, or to iterate more in case of issues.
Depending on complexity, new code can either be fast-tracked for immediate release, or require up
to days or weeks of iteration. In either case, the release process has also been automated to require,
for the maintainer, only a single operation through git or the GitLab interface for each repository
to release from.

9. Conclusions

At the time of this writing, continuous integration has been part of our development flow
for over one year. Initially introduced to assist in the software transition from the SLC6 to the
CC7 operating system, and from the initial 10GbE-based prototype to the final PCIe-based FPGA
readout, its scope has progressively increased to encompass automated firmware simulation and
compilation for the six LHCb subdetectors (each requiring multiple configurations) across three
hardware platforms, and automated packaging and deployment of JCOP components and WinCC
OA projects, while still retaining support for legacy hardware and software.

Broken builds are quickly identified and can be immediately acted upon, while nightly builds
ensure that firmware images for all desired configurations are always up to date, immediately avail-
able for deployment, and easily traceable for comparative testing.

As the LHCb upgrade advances towards Run3, these tools and practices will prove invaluable
in ensuring a smooth ramp up and commissioning of the readout system for the entire experiment.

References

[1] A. G. Alvarez, B. Aparicio Cotarelo, A. Lossent, T. Andersen, A. Trzcinska, D. Asbury, N. Hlimyr
and H. Meinhard, “Extending software repository hosting to code review and testing,” J. Phys. Conf.
Ser. 664 (2015) no.6, 062018. doi:10.1088/1742-6596/664/6/062018

[2] J. P. Cachemiche, P. Y. Duval, F. Hachon, R. Le Gac and F. Réthoré, “The PCIe-based readout system
for the LHCb experiment,” JINST 11 (2016) no.02, P02013. doi:10.1088/1748-0221/11/02/P02013

[3] L. G. Cardoso, C. Gaspar, J. V. V. Barbosa and F. Alessio, “Controlling DAQ electronics using a
SCADA framework,” doi:10.1109/RTC.2016.7543123

4


