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Bayesian Gaussian Process Optimization can be considered as a method for the determination of
the  model  parameters,  based  on  experimental  data.  In  the  range  of  soft  QCD physics,  the
processes of hadron and nuclear interactions require using phenomenological models containing
many parameters.  In order to minimize the computation time, the model predictions can be
parameterized using Gaussian Process regression, and then provide the input to the Bayesian
Optimization. In this paper, the Bayesian Gaussian Process Optimization has been applied to the
Monte  Carlo  model  with  string  fusion.  The  parameters  of  the  model  are  determined  using
experimental data on multiplicity and cross section of pp, pA and AA collisions in a wide energy
range.  The results provide important  constraints on the transverse radius of  the quark-gluon
string (rstr) and the mean multiplicity per rapidity from one string (μ0).
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1. Introduction

One of the new modern methods that can be used to optimize model parameters on the
basis  of  experimental  data  is  the  Bayesian  approach [1,  2,  3].  This  approach allows  us  to
determine  the  regions  of  admissible  (on  the  basis  of  available  experimental  data)  model
parameters with allowance for possible correlations between the parameters. 

In view of the complexity of the evolution of nucleus-nucleus collisions and the need for
large statistics,  taking into account  the  scanning by more parameters,  modern Monte  Carlo
calculations require large computational resources [4, 5]. To interpolate model calculations for
intermediate parameter values, the so-called Gaussian Processes for Machine Learning [1] can
be used, allowing to reduce the time required for computation by orders of magnitude.

In this paper, the Gaussian process was applied to the Monte Carlo model with string
fusion [6, 7, 8] to optimize a number of parameters based on multiplicity data in pp, p-Pb and
Pb-Pb collisions at LHC energies.  This model enables a description of collisions with protons
and nuclei on the partonic level. The main feature of the model is that it allows color tubes
(strings) to fuse with each other and form strings with higher tension.

The following parameters were considered for the optimization: the radius of the nucleon,
the confinement radius, the effective dipole coupling constant, the mean multiplicity per rapidity
unit from one string (μ0), the transverse radius of the string (rstr ).

The calculations were made as part of the GPML package Matlab Code, v. 4.1 [9], in the
GNU  Octave  computing  environment,  v.  4.0.0  [10].  We  used  a  quadratic  exponent  as  a
correlation  function  and  a  Gaussian  likelihood  function.  The  results  were  cross-checked  in
Scikit-learn Gaussian Process Regressor (python 2.7.12, Sklearn 0.18.1) [11].

2. Bayesian Gaussian process for model parameters optimization

The typical schema of the framework of the parameter tuning using Bayesian Gaussian
process is shown in the figure 1.

Figure 1: Application of Bayesian Gaussian process for model parameters optimization. 
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The heavy demanding model (labeled here as MC model) takes as input the set of the
parameters and produces in the output the definite set of observables. For example, in heavy ion
collisions the observables can be: transverse momentum spectra of the charged particles, pt-
dependent flow coefficients, particle yields ratios etc.

 Instead  of  the  full  model,  the  heavy calculations  are  replaced  by  a  surrogate  model
(trained  regression).  For  this  purpose,  the  Professor  software  [12-14]  can  be  used,  which
provides multi-variable polynomial interpolation. However, it is not flexible enough and still
quite demanding. The Gaussian Process parametrization appears as a good alternative. In this
approach effectively the fitting function appears as a Gauss function with specific kernel. 

2.1 Stochastic  Gaussian  process.

A  stochastic  process  is  Gaussian  if  and  only  if  for  every  finite  set  of  indices

 is a multivariate Gaussian random variable.

Gaussian processes can be completely defined by covariance function, or kernel,  K (x , x ' ) ,

defined as  the covariance of the values of the random field at the two locations  x and x’. For
example:

In our analysis we will use a sum of the Squared exponential and Gaussian noise function:

                                                       (1)

Here  is the Kronecker delta.

The general advantages of Gaussian processes are the following [11]:
– The prediction interpolates the observations (at least for regular kernels).
– The prediction is probabilistic (Gaussian). One can compute empirical confidence
intervals, and they can be used for online fitting and adaptive refitting

The disadvantages of Gaussian processes are:
– They are not sparse, i.e., they use the whole samples/features information to
perform the prediction.
– They lose efficiency in high dimensional spaces, namely when the number of
features exceeds a few dozens.

In our analysis these disadvantages are not crucial, because we have quite a low number of
observables (features).

2.2 Bayesian parameters optimization.

After  the  model  is  defined,  its  prediction  can  be  extracted  with  its  uncertainty  and  the
comparison with the experimental data is characterized by a likelihood.
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According to Bayes’ theorem:

   (2)

For the prior distribution we take it to be uniform. If the model is good in constraining the data, 
the posterior will very slightly depend on the prior.

                                                           (3)

The marginal likelihood in formula (2) appears as a normalization constant. Hence, the
likelihood (determined from the Gaussian Processes) 

                                   ln P (x∣y , X )=−
1
2

(y− yexp)
2

σexp
2

+const ,                                 (4 )

and the Posterior

                                          P(x∣y , X )∝e
−

1
2

( y− yexp)
2

σexp
2

.                                             (5)

For several observables, we take an independent Gaussian Process for each one and then
combine them in the Likelihood (as a sum). A more advanced technique would be to apply a
Principal  Component  Analysis  to  observables  in  order  to  exclude  inter-correlations  among
different observables.

3. Monte Carlo model description

The present model [6, 7, 8] is based on the partonic picture of nucleon collisions. Each
nucleon is supposed to consist of a valence quark-diquark pair and a certain number of sea
quark-antiquark pairs. The number of pairs is distributed according to a Poisson law. The total
momentum of a nucleon is shared between partons according the exclusive distribution [6]: 

 

(6) 

Here x j  means the fraction of longitudinal momentum carried by quark j . The valence quark

is labelled by j=N−1 , diquark by j=N  , and the rest numbers j=1. .. N−1 correspond to

quark-diquark  pairs;  αN=3 ∕ 2  with  probability  of  2 ∕ 3  (ud-diquark  configuration),  and

αN=5 ∕ 2  with probability of 1 ∕ 3  (uu-diquark configuration). 

An  elementary  interaction  is  realized  in  the  model  of  color  dipoles.  The  transverse
coordinates  of  the  dipoles  are  generated  according  to  a  Gaussian  distribution,  with  mean-

squared transverse radius r0=√ 2
3
rN  , where rN  is a nucleon radius. It is assumed that each

quark-diquark and quark-antiquark pair forms a dipole; and the probability amplitude of the
collision of two dipoles from target and projectile is given by: 

3

ρ( x1, . .. xN )=c⋅∏
j=1

N−1

x j

−1
2 ⋅xN

αN⋅δ( ∑
i=1

N

xi−1) ,
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(7)

where  ( r⃗1 ,r⃗2 ), ( r⃗ ' 1 , r⃗ '2 )  are transverse coordinates of the projectile and target dipoles, and

α s  is an effective constant, whose value is a tunable parameter of the model. After taking into

account the confinement effects the probability amplitude is: 

  

(8)

Here rmax  is the characteristic confinement scale. 

Note that according to these formulas (7) – (8), two dipoles interact more probably, if the
ends are close to each other. At fixed distance between the quarks the interaction probability
increases with the width dipoles. If in Monte Carlo simulations there is a collision between two
dipoles, two quark-gluon strings are stretched between the ends of the dipoles, and the process
of string fragmentation gives observable particles. 

An important feature of the model is that each dipole can participate in inelastic collision
with color string formation only once, in order to keep the energy conservation in an elementary
nucleons collision [15, 16].

Multiplicity  and transverse momentum are  calculated in the  approach of  color  strings,
stretched between projectile and target partons, taking into account their finite rapidity width. In
the calculation of the multiplicity, the interaction between several strings in the transverse plane
is taken into account, which is performed in the model of string fusion [17, 18, 19], according to
which  the  multiplicity  and  transverse  momentum  of  particles  emitted  from  a  cluster  of
overlapped strings are: 

 

(9)

where  Sk  is  the  area,  where  k  strings  are  overlapping,  σ0=π rstr
2  is  the  single  string

transverse area, and μ0  and p0  are the mean multiplicity and transverse momentum from one

string. 
Note that the size of string fusion effect depends on the transverse radius of the string: the

thicker  the  strings,  the  more  of  them are  overlapping.  The  limit  of  non-interacting  strings
corresponds to zero string radius. 

4. Parameter dependence approximation

The main parameters of the model are the following: 

–  mean number of dipoles λ  ;

–  transverse mean-squared radius of nucleon r0  ;

–  confinement scale rmax  ;

–  transverse radius of string rstr  ;

–  mean multiplicity from single string per unit of rapidity μ0  .

It is assumed that only λ  depends on the collision energy  √s  . 

4

f =
α s

2

2
ln2|r⃗1−r⃗ ' 1||r⃗2−r⃗ ' 2|

|r⃗1−r⃗ ' 2||r⃗2− r⃗ ' 1|
,

f =
α S

2

2
[K0(

|r⃗1−r⃗ '1|
rmax

)+K0(
|r⃗2−r⃗ '2|

rmax

)−K 0(
|r⃗ 1−r⃗ '2|

rmax

)−K0(
|r⃗2−r⃗ ' 1|

rmax

) ]
2 .

⟨μ ⟩k=μ0 √k
Sk

σ0

,        ⟨ pt
2
⟩=p0 √k ,
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For each parameter set, the value of λ  is obtained using the correspondence between the

mean number of dipoles and collision energy λ=λ(√ s ;r0 , rmax) . This step does not include

the calculation of multiplicity and, hence, does not involve rstr  and μ0  values. For the rest, the

Bayesian Gaussian Process is applied. 
We start from uniform priors in the range:
r 0 : 0.4 – 0.7 fm;
r max /r 0 : 0.3 – 0.6;
α s : 0.2 – 2.8;
r str : 0 – 0.6 fm;

  
  

Figure 2: Posterior distribution constraining the model with experimental data [20-23]. 

Figure 2 shows the posterior distribution after applying Eq. (2) to the experimental data on
pp and pp multiplicity in a wide energy range (900 GeV – 7 TeV) [20-23]. We see that this

observable (pp multiplicity) is not sensitive to string fusion rstr. Using only this data,  rmax and

r0 appear not well restricted (the distribution is too wide). However the mean multiplicity from

one string μ0 clearly peaks around 1.0.

To see the energy dependence of the data containing power, in the Figure 3 we compare
the results for two different energies. The two top panels of both Fig. 3(a) and Fig. 3(b) show

the  Gaussian Process prediction for multiplicity as a function of two model parameters ( rstr

 and μ0 ) and the estimated fitted error. The two bottom panels show the posterior distribution

for  these  two  model  parameters  constrained  by  the  experimental  data  at  given  energy.
The Figure 3. shows that both energies restrict the parameters in a consistent way.
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(a)         

   
(b)   

Figure 3: Posterior parameter estimation from energy dependence of pp multiplicity (a: using

pp interaction at  √s=0 . 9  TeV [20, 21, 23],  b: at  √s=7   TeV [22]). The meaning of the

color is written in title of each panel (see also text).
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Figure 4:  Posterior parameter estimation from central PbPb collisions at 2.76 TeV [24]. The
notation is the same as in Figure 3 (see also text).

In figure 4 the posterior parameter estimation is shown after taking into account the data
on multiplicity from central Pb-Pb collisions at 2.76 TeV [24]. We see that heavy ion data helps

a lot to restrict the transverse string radius rstr. For most values of  μ0 , rstr is restricted within

0.2-0.3 fm.

    

Figure 5: Combined results on Posterior distribution for parameters, obtained using both data
on pp multiplicity in a wide energy range [20-23] together with data on multiplicity in central
Pb-Pb collisions at 2.76 TeV [24] (left). Contour plot in the right panel shows 1, 2, 3 sigma levels.

In figure 5 the combined posterior distribution is shown for all the data used. We obtained
the following final estimation:

rstr=0.25±0.03fm

μ0 =1.1±0.03
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5. Conclusions

Bayesian Gaussian process optimization has been applied for the parameter tuning of the
non-Glauber Monte Carlo model with string fusion. In the model, the inelastic cross section and
multiplicity  are  described  over  a  wide  energy  range  and  for  different  colliding  systems.
Multiplicity per rapidity from one single string μ0 is constrained by the energy dependence of
the multiplicity in pp collisions. The transverse radius of the string rstr (string fusion parameter)
is constrained by the multiplicity in central Pb-Pb collisions. Using these data we obtained the

final estimation: rstr=0.25±0.03fm, μ0 =1.1±0.03.

The possible improvement of the framework and the parameter estimation procedure can
be done by considering more data, extension of the energy range and application of the Principal
Component Analysis to all the observables.
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