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1. Introduction

The computation of the nucleon EDM from lattice QCD has become quite a priority, as its
crucial to understand the ongoing and future neutron and proton EDM experiments. Although
the dimension-four "θ -term" that is permitted in the Standard Model can induce an EDM, higher-
dimensional operators arising from beyond the Standard Model (BSM) physics could also be re-
sponsible. The computation of the EDM induced specifically by the θ -term helps to disentangle
different CP-violating sources from future experimental results.

While the theta term and the link to the nucleon EDMs has been explored in lattice QCD in the
past [1, 2, 3, 4, 5, 6, 7], the result have not been satisfactory mainly due to signal-to-noise problems.
In this spirit, this proceedings explores the relation between the topological charge density and the
nucleon interpolating operators in order to improve the signal to noise. This technique will be
employed to the modified nucleon two-point correlation function to improve the determination of
the nucleon mixing angle αN, as well as the nucleon three-point correlation function to improve
the determination of the proton and neutron EDM.

This signal-to-noise improvement, when used with the gradient flow to overcome divergences
and renormalization complications, makes the θ -term induced continuum extrapolated nucleon
EDM from lattice QCD computationally feasible.

2. θ -term using the Gradient Flow

The QCD Lagrangian, including the CP-violating θ -term, has the form

LQCD(x) =
1
4

G(a)
µν(x)G

(a)µν(x)+∑
q

ψq(x)
[
γ

µDµ(x)−mq
]

ψq(x)− iθq(x), (2.1)

where the topological charge density is defined as:

q(x)≡ 1
32π2 εµνρσ Tr [Gµν(x)Gρσ (x)] . (2.2)

We define the topological charge density using the gradient flow (GF) [8]. The flow time radius√
8t f signifies how large the radius of smearing is as a result of applying the gradient flow. This

constitutes a relabeling of

q(x) GF−−→ q(x, t f ) =
1

32π2 εµνρσ Tr [Gµν(x, t f )Gρσ (x, t f )] . (2.3)

3. Lattice Parameters

This study was performed on the PACS-CS gauge fields available through the ILDG [9]. They
have N f = 2+1, and are generated using a non-perturbative O(a)-improved Wilson fermion action
along with an Iwasaki gauge action. The main ensembles used for this study are of 323× 64 di-
mensions with a' 0.0907 fm (β = 1.90). The 3 ensembles used have mπ = {411, 570, 701}MeV,
which helps to understand the chiral behavior of the improvement techniques.

Further studies were performed on lattices of dimensions 163× 32, 203× 40 and 283× 56,
with lattice spacings of a = {0.1215,0.0980,0.0685} fm. This showed us how effective the im-
provement technique is at different lattice resolutions. Information about all the studied ensembles
are contained in Refs. [10, 11].
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4. Nucleon Mixing Angle αN(θ)

To compute the nucleon mixing angle, the starting point is to understand how the two point
correlation function changes as we move from a CP-even theory to a theory including the θ term.

The small-θ expansion applied to the nucleon two-point correlation function helps us relate
expectation values in both theories

G2(~p ′, t, t f )θ = G2(~p ′, t,Γ+)+ iθG(Q)
2 (~p ′, t,Γ+γ5, t f )+O(θ 2), (4.1)

where the definition of the standard two-point correlation function has the form

G2(~p ′, t,Γ+) = Tr
{

Γ+G2(~p ′, t)
}
= ∑

~x
e−i~p ′·~x Tr

{
Γ+ 〈χ(~x, t)χ(~0,0)〉

}
, (4.2)

and we defined a modified two-point correlation function

G(Q)
2 (~p ′, t,Γ+γ5, t f ) = Tr

{
Γ+γ5G(Q)

2 (~p ′, t, t f )
}
= ∑

~x
e−i~p ′·~x Tr

{
Γ+γ5 〈χ(~x, t)χ̄(~0,0)Q(t f )〉

}
,(4.3)

where the topological charge Q(t f ) is the usual space-time integral of the charge density. In the
previous definitions, χ and χ are interpolating operators with the quantum numbers of a nucleon,
inserted with a source-sink time separation of t and Γ+ = (I+γ4)

2 .
By working out the spectral decomposition of all three two-point correlators, one finds that

the nucleon mixing angle, up to first order in θ , αN(θ) = α
(1)
N θ +O(θ 3), can be extracted from the

ratio

α
(1)
N ∼

t→∞

G(Q)
2 (0, t,Γ+γ5, t f )

G2(0, t,Γ+)
. (4.4)
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Figure 1: The mπ (left) and lattice spacing (right) ensemble results for the nucleon mixing angle
α
(1)
N , as defined in eq.4.4, plotted against source-sink separation t.

The standard method for computing the nucleon mixing angle α
(1)
N is shown in fig. 1, plotted

against source sink separation t. A plateau to extract α
(1)
N is easily found. For the ensembles at

different lattice spacings in the right plot of fig. 1, we observe no discretization effects, as the
results are statistically consistent with one another in the range of t for which a plateau has formed.

4.1 Improving the Nucleon Mixing Angle αN(θ)

Motivated by a similar study to the topological susceptibility presented in [12], we attempt to
improve the signal-to-noise ratio by summing the topological charge density only over the spatial

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
5
9

Improved Matrix Elements in a θ Vacuum Jack Dragos

directions and study the corresponding Euclidean time dependence τ , In particular we study the
dependence of the signal to noise with respect of the time distance between the charge insertion
and the nucleon interpolating operators

G(Q)
2 (τ, t,Γ+γ5, t f ) = ∑

~x
Tr
{

Γ+γ5 〈χ(~x, t)Q(τ, t f )χ̄(~0,0)〉
}
, Q(τ, t f ) = a3

∑
~y

q(~y,τ, t f ) . (4.5)

Here and in the following the correspondent representations of the correlation functions as in
eq. (4.5) in terms of operators expectation values has to be considered time-ordered.
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Figure 2: The nucleon mixing angle αN computed with a topological charge insertion time τ (in
fm). Every even τ is excluded to improve visualization. Left, middle and right plots were computed
on the mπ = {411,701} MeV and a = 0.0980 fm ensembles. The arrow indicates the location of
the nucleon interpolating operator at the sink, t.

With the choice of the spin projector, fig. 2 shows how the signal is dominated by the con-
tribution at τ → 0 1. With this knowledge, one can symmetrically sum about τ = 0 and study the
convergence to the total sum

G(Q)
2 (t, t f , ts) =

ts

∑
τ=0

[
G(Q)

2 (τ, t, t f )+G(Q)
2 (T − τ, t, t f )

]
=

ts

∑
τ=0

∑
~x

Tr
{

Γ+γ5 〈χ(~x, t)Q(τ, t f )χ̄(~0,0)〉+Γ+γ5 〈χ(~x, t)Q(T − τ, t f )χ̄(~0,0)〉
}
. (4.6)
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Figure 3: mπ (left, set with t/a = 10) and lattice spacing (right) comparisons of the improved
nucleon mixing angle αN plotted against the sum parameter ts. The final point coincides with the
regular nucleon mixing angle from Section. 4. The arrow indicates the location of the nucleon
interpolating operator at the sink, t.

1In the following we omit the dependence on the projector of the correlation functions.
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The ts dependence of the nucleon mixing angle αN(θ) is shown in fig. 3 for both the mπ (left)
and lattice spacing (right) ensembles. For all ensembles, we observe a saturation around the value
of ts ' t, i.e. the values of α

(1)
N obtained summing up to ts ' t are statistically consistent with the

values obtained summing up to ts = T .

5. Improvements to the Ratio Functions

The exact same procedure can be applied to the modified three-point correlation functions,
when attempting to compute the nucleon vector current Jµ matrix elements. We can determine
form factors with appropriate insertions of the spin projector Γ. We start by defining the modified
three-point correlation function, explicitly leaving in the time dependence of the topological charge
(denoted τQ)

G(Q)
3 (~p ′, t,~q,τ,Γ,τQ, t f ) = ∑

x,y
e−i~p ′·~xei~q·~yTr

{
Γ〈χ(~x, t)Jµ(~y,τ)Q(τQ, t f )χ(~0,0)〉

}
. (5.1)

When plotting this quantity in fig. 4 we find, for the particular nucleon matrix element in
question, that the signal occurs when the topological charge is near the source location of the
nucleon (τQ = 0). This motivates symmetrically summing τQ around 0.

The quantity relevant to determine the form factors is the “ratio function”, defined as:

R(Q)(~p ′, t,~q,τ,Γ,τQ, t f ) =
G(Q)

3 (~p ′,t,~q,τ,Γ,τQ,t f )
G2(~p ′,t,Γ+)

√
G2(~p ′,τ)G2(~p ′,t)G2(~p,t−τ)
G2(~p,τ)G2(~p,t)G2(~p ′,t−τ) . (5.2)

In fig. 5 we show selected results for a summed charged density as a function of the summation
range ts. The plots show that in all case the ratio functions reach a plateau for values of ts ' τ , i.e.
the location of the sink. Similar as was the case for αN, extending the summation up to values of
ts = T it only increases the noise of the final result.
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Figure 4: Topological charge Euclidean time dependence τQ with respect to the ratio function R(Q)
3 .

Every even τQ is excluded to improve visualization. For maximal signal, the unit of momentum
a~q = [0,0,1] (blue) and a~q = [0,0,2] (red), the vector current with Jµ=4 , projector Γ = Γ+γ3γ5,
sink time t and current insertion time τ (indicated in legend) are selected. The left and middle and
right plots are the mπ = {411,570}MeV and a = {0.0685} fm ensembles.
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Figure 5: Summed topological charge Euclidean time dependence ts with respect to the ratio func-
tion R(Q)

3 . For maximal signal, the unit of momentum a~q = [0,0,1] (blue) and a~q = [0,0,2] (red),
the vector current with Jµ=4 , projector Γ = Γ+γ3γ5, sink time t and current insertion time τ (in-
dicated in legend) are selected. The standard value for this quantity is obtained by taking the final
ts value. The left and right plots are the results computed on the mπ = 570 MeV and a = 0.0980
fm ensembles.

6. Conclusion

The determination of nucleon two-point and three-point correlation functions are the founda-
tion of any lattice QCD computation of nucleon observables. When we move to a CP-violating
theory with a θ -term treated in a pertubative manner, we must compute nucleon two-point and
three-point correlation functions with a topological charge insertion which interacts with the nu-
cleon systems. As these observables suffer from severe signal-to-noise problems, improving these
quantities are of the highest priority. In this proceedings, we have explored and presented a method,
based on the principle that the topological charge will only couple to the system in question when
they are “close in Euclidean time”.

We began by studying the interaction of the topological charge with a propagating nucleon
state. With the appropriate ratio, the nucleon mixing angle can be determined from this quantity.
The following section 4.1 studied how the interaction between the nucleon and the topological
charge is suppressed as the topological charge is far away in Euclidean time from one of the nucleon
interpolating operator. Although the results of this study can produce an improvement on the order
of 1.5-to-2 times, we also observed some statistical fluctuations in the region of exponentially
suppressed signal (where Q is "far away from the nucleon").

Lastly, the topological charge can be studied in relation to a nucleon three-point correlation
function, as shown in section. 5. After constructing the “ratio function”, and selecting appropriate
momenta and spin projectors, the topological charge can be inserted with varying temporal location
to determine where the signal is dominating. For the parameters chosen in this paper, summing
around the source location of the nucleon, produced a exponentially convergent dependence. As
the signal to noise for this observable is quite poor, we did not observe any statistically significant
disagreement between the improved and unimproved techniques. Along with this, we once again
observed even greater signal-to-noise improvements, ranging on the order of a factor 2-to-4.
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