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1. Introduction

In QCD there is a crossover at high temperatures where the quarks go from a bound hadronic
state to a quasi free quark gluon plasma (QGP) state. Around the temperature of the crossover the
properties of strongly interacting matter change rapidly and besides the deconfining transition of
the quarks two other phenomena occur. On the one hand while the approximate chiral symmetry
is spontaneously broken at low temperatures, it becomes restored in the high temperature regime.
This is accompanied by the localization transition of the lowest end of the Dirac spectrum, which
means that the low energy eigenmodes become localized as we go to high temperatures. In contrast
it is known that at lower temperatures all modes of the Dirac operator are extended. Since these
phenomena happen during the crossover, the question arises whether they are in a causal connec-
tion. For the localization of the low modes we can assign an exact temperature where the localized
modes appear, whereas the other phenomena are just crossovers so we cannot tell wether they
happen exactly at the same temperature as the localization transition. However, there are models
where a genuine deconfining or chiral phase transition occurs, for example in quenched QCD. So
in this case we can ask wether the critical temperatures of the different transitions are equal. If they
happen at the same temperature, that would mean there is a strong connection between the three
phenomena.

In this paper we will use the SU(3) quenched theory with a genuine first order deconfining
phase transition and study the localization transition and how it is connected to the deconfining
phase transition. We simulated SU(3) lattices above the deconfining phase transition and used
lattice configurations of different temperatures (or different β gauge couplings) near the critical
temperature. We wanted to see how the localised modes behave as we go closer to the deconfining
critical temperature. For this we calculated the low end of the spectrum of the Dirac operator
for each configuration and determined the so called ’mobility edge’ [1], the energy value which
separates the localized modes from the extended modes in the spectrum. After this we could
analyze how this value tends toward zero as we decrease the temperature. We cannot see this
directly from the lattice simulations, because at the critical temperature the correlation length is too
large and this is not beneficial computationally to use that large lattices. So we extrapoleted where
the mobility edge reaches zero which is the critical temperature of the localization transition. Below
that temperature there are no localized modes, all of the modes are extended in the spectrum. We
used the spectra of staggered fermions and the overlap operator [2] and found that for both cases
the critical temperature of the localization coincides with the critical temperature of the deconfining
phase transition which we know fom the literature for the SU(3) quenched gauge theory [3]. This
means that there is a strong connection between the deconfining of the quarks and the localization
of the low energy modes. Results by Holicki et al. presented at this conference show that twisted-
mass Wilson quarks also exhibit a localization transition [4]. Another interesting question is how
the localized modes related to instanton zero modes. Which is discussed at this conference by T.
Kovács.

In the next section we will see the method we used to calculate the mobility edge λc and after
that in Section 3 we will show how we extrapolated the λc(T ) function to get the results for the
critical temperature of the localization transition.
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2. Determination of the mobility edge

Our aim is to find the critical temperature where the localized modes of the Dirac operator
completely disappear. For this we study the low part of the Dirac spectrum at high temperatures
just above the deconfining critical temperature. We know that at high temperatures the lowest end
of the spectrum of the Dirac operator consists of localized modes while higher in the spectrum all
modes are extended. The mobility edge λc is the boundary which separates the localized modes
from the extended modes. As we decrease the temperature the mobility edge moves down in
the spectrum toward zero and at a critical temperature T loc

c it reaches zero λc(T loc
c ) = 0. At this

point all of the eigenmodes become extended even in the lowest part of the spectrum. We want
to find this transition in the quenched theory where we set the temperature by the inverse gauge
coupling β of the Wilson gauge action. We calculate the mobility edge as the function of the inverse
gauge coupling and extrapolate it to get the critical coupling β loc

c of the localization transition and
compare it with the known value of the deconfining transition β

decon f
c .

Now we will show the method we used to calculate the mobility edge. To find the energy
which separates the localized modes from the extended modes first we have to analyze the local
statistical properties of the spectrum. The localized modes are independent of each other therefore

Figure 1: The level spacing probability density functions. The dashed line represents the Poisson distribu-
tion, the solid line is for the Wigner-Dyson distribution.

the corresponding eigenvalues will be described by Poisson statistics. The extended modes are
mixed by the gauge field therefore the eigenvalues of this part of the spectrum will obey Wigner-
Dyson statistics which we know from random matrix theory [5]. We studied a quantity which is
known analitically for both kinds of statistics, the so called unfolded level spacing distribution.
This is the probability distribution of the energy differences between two adjacent eigenvalues of
the Dirac operator. Unfolding means a local rescaling of the level spacings by their average value.
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By this we set the spectral density to unity through the whole spectrum to get a universal, scale
independent quantity. In Figure 1 we show the probability density functions of the level spacings
for the two kinds of statistics.

Figure 2: The function Is0(λ ) along the spectrum (λ ) for staggered fermions, Nt = 4,β = 5.74 with three
different spatial volumes.

We can detect the transition in the spectrum where the statistics changes from Poisson to
Wigner-Dyson by calculating a parameter of the level spacing distribution and tracing how it
changes as we move along in the spectrum. The parameter we choose is the integrated probability
density function of the unfolded level spacing distribution

Is0 =
∫ s0

0
p(s)ds. (2.1)

Here s is the difference between two adjacent eigenvalues, s0 is a parameter and p(s) is the proba-
bility density function of the unfolded level spacings. It is p(s) = exp(−s) in the case of localized

modes. In the case of extended modes it is p(s) =
32
π2 s2 ·exp

(
− 4

π
s2
)

, the unitary Wigner surmise

[5] which belongs to the same universality class as our Dirac operator. We chose the first intersec-
tion point of the two density functions for the upper bound of the integral s0 = 0.508, because in
this case the difference between the integrals of the two limiting statistics is maximized. To trace
the change of this quantity we divide the spectrum into small intervals and calculate Is0 in each of
them separately.

In Figure 2 we show a typical graph of how Is0 changes in the spectrum for three different
spatial volumes. The transition becomes sharper as we go to larger volumes. It was shown that in
the infinite volume limit this becomes a genuine second order Anderson type transition belonging
to the three dimensional unitary class [6]. The critical point of this transition in the spectrum is the
mobility edge λc. Since we work with finite volume lattices the transtion is not infinitely sharp as
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it is in the thermodynamic limit. We can define λc to be the point where the function Is0 reaches
an arbitrarily chosen value between the Poisson and Wigner-Dyson values. In the infinite volume
limit λc will be exact, since any value chosen between the limiting IPoisson

s0
= 0.398 and IWD

s0
= 0.117

values tend to the same point in the spectrum as we move to infinite volumes.

Staggered fermions
Nt β Ns Nconf Nevs Nt β Ns Nconf Nevs Nt β Ns Nconf Nevs
4 5.693 48 2381 1500 6 5.897 48 682 1350 8 6.1 64 486 400

5.694 48 2014 1600 5.9 48 813 1350 6.15 64 385 400
5.695 48 2028 1300 5.91 48 1088 1350 6.18 64 384 400
5.696 40 1628 1000 5.92 40 960 1000 6.2 64 418 400
5.6975 48 2000 1500 5.93 40 1050 1000 6.25 64 320 400
5.6985 40 1973 1000 5.94 40 1092 1000 6.3 64 452 400
5.7 40 1022 1000 5.95 40 1276 1000
5.71 40 1073 1100 6.0 40 1958 1000
5.74 40 2390 1100

Overlap fermions
Nt β Ns Nconf Nevs
6 5.91 40 741 80

5.92 40 797 80
5.93 40 750 80
5.94 40 770 80
5.95 40 565 80
5.96 40 605 80

Table 1: The parameters of the simulations. Nt is the temporal size of the lattices, β is the inverse Wilson
gauge coupling, the Ns is spatial size of the lattices, Nconf is the number of configurations and Nevs is the
number of eigenvalues computed on one configuration. The parameters for the staggered operator are up
and for the overlap operator are below.

We used the value Icrit
s0

= 0.1966, which was obtained in a finite size scaling study [6] , to locate λc

in the spectrum because in this case finite size corrections are small. To determine λc from the data
we used a linear fit to find where the function reaches its Icrit

s0
critical value. We can do this because

around Icrit
s0

the function has an inflection point therefore we could approximate it with a linear
function on a small interval. We increased the spatial volumes by steps and calculated the mobility
edge for each of them up to the point where λc did not change anymore within the statistical error
and used the last volumes for the calculations. Colse to the deconfining critical teperature we
needed to use larger spatial volumes because of the increasing correlation length. The error was
calculated by the Jackknife method. In Table 1 we show the parameters of the simulations. We
simulated quenched SU(3) gauge theory with the Wilson gauge action. The temporal extent of the
lattices were Nt = 4,6,8 for staggered fermions and Nt = 6 for the overlap operator with two stout
smearings [7] in both cases. We calculated the mobility edge for different gauge couplings above
the deconfining critical temperature.
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3. Results for the critical temperature of the localization transition

Figure 3: The mobility edge as a function of the inverse gauge coupling for staggered fermions and temporal
extent Nt = 4 with a fitted function.

Now we will show how we determined the critical coupling of the localization transition. For
this we have to analyze the dependence of the mobility edge on the inverse gauge coupling β . We
varied β above the deconfining critical temperature and for each β calculated the mobility edge
as shown in the previous Section. During this procedure the temporal size Nt of the lattices was
kept fixed. Since the correlation length grows as we go toward the transition, to keep up with
that we needed to use lattices with larger spatial volume. We used the largest spatial volume we
could afford which made a restriction on the smallest β we could use. We fitted a three parameter
function to our data:

λc(β ) = p1(β −β
loc
c )p2 . (3.1)

Here p1, p2 and β loc
c are the parameters. We found that this function describes the data well in

a range above the critical temperature. We limited the upper end of the fit range by requiring an
acceptable value for χ2. The critical coupling is the parameter β loc

c where the mobility edge reaches
zero λc(β

loc
c ) = 0 and all of the localized modes disappear from the Dirac spectrum. In Figure 3

we show data for Nt = 4 with a fitted function λc(β ). In the other cases with different temporal
sizes the graphs look very similar.

Previously we used this procedure for temporal extents of Nt = 4,6 and 8 with staggerred
fermions [8] and found that within the statistical error the critical couplings of the localization
transition coincide with the critical couplings of the deconfining transition. Subsequently we also
calculated the critical coupling for Nt = 6 with overlap fermions where we used the same lattice
ensemble as in the staggered case. It also showed good agreement with the critical coupling of the
deconfining transition. In Table 2 we show the quantitative results in the four cases.
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Nt βc
deconf βc

loc p1 p2 fit range
Staggered 4 5.69254(24) 5.69245(17) 0.1861(6) 0.563(2) 5.695-5.71

6 5.8941(5) 5.8935(16) 0.1580(8) 0.320(1) 5.91-5.96
8 6.0624(10) 6.057(4) 0.164(4) 0.233(2) 6.08-6.18

Overlap 6 5.8941(5) 5.8943(85) 0.170(2) 0.200(4) 5.91-5.96

Table 2: Main results for the critical couplings with staggered and overlap fermions. The Nt is the temporal
size of the lattice, βc

deconf and βc
loc are the critical inverse gauge couplings for the deconfining and the

localization transition, p1 and p2 are the fit parameters and we also show the range of the fit we used.

4. Summary

We studied the localization transition of the quarks in quenched SU(3) lattice gauge theory.
We calculated the energy that separates the localized modes from the extended modes, called the
mobility edge. The temperature was set by the inverse gauge coupling. By changing the inverse
gauge coupling we determined the temperature dependence of the mobility edge and extrapolated it
to find the critical temperature of the localizaion transition. The critical point is where the mobility
edge reaches zero, therefore here the localized modes disappear and under that temperature all of
the modes are extended. We calculated the critical temperature for both staggered and overlap
fermions and found good agreement with the critical temperature of the deconfining transition.
This indicates that these two phenomena are strongly related.
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