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1. Introduction

Lattice QCD has been very successful at establishing that QCD is the theory of strong in-
teractions, however some aspects remain inaccessible to classical computing: some finite density
calculations have a sign problems and real time evolution requires detailed information not avail-
able from conventional MC simulations at Euclidean time. For these reasons, there has been a
recent interest to consider the experimental use of cold atoms [1, 2] or trapped ions [3] to perform
quantum simulations relevant for lattice gauge theory and high energy physics. For reviews of
various aspects of this approach, see Refs. [4, 5, 6]. A complementary approach is to use existing
quantum computers [7, 8, 9, 10]. A long term and ambitious goal that could have a significant
impact on our understanding of collider physics would be to do jet physics calculations from first
principles.

The tensor renormalization group (TRG) approach of lattice models provide tools that natu-
rally fit the needs of quantum computations/simulations (QC/S). In most lattice models, the vari-
ables of integration are compact and character expansions (such as Fourier series) can be used to
rewrite the partition function and average observables as discrete sums of contracted tensors. As
an example for the O(2) model, we have for each link:

eβ cos(θi−θ j) =
+∞

∑
ni j=−∞

eini j(θi−θ j)Ini j(β )

This reformulations have been used for RG blocking but they are also suitable for QC/S when
combined with appropriate truncations. In section 2, we review some aspects of the TRG approach
in this context. In section 3, we discuss Frequently Asked Questions (FAQs) about tensorial for-
mulations: 1) effects of truncation on global symmetries, 2) boundary conditions and 3) the use
of Grassmann tensors for the Ising model. In section 4, we comment on various questions dis-
cussed during the conference and after: analog versus digital computations and the treatment of
noncompact fields.

2. The Tensor Renormalization Group method

The Tensor Renormalization Group (TRG) [11, 12, 13] is an implementation of Wilson pro-
gram for lattice models with controllable approximations [14]. It leads to universal fixed point
equations, however truncation methods need to be better understood and optimized. Besides the
Ising model, it can be used for O(2), O(3) spin models, principal chiral models, gauge models
(Ising, U(1) and SU(2)) [15], CP(N) models [16], fermions [17, 18]. It would be interesting to
make detailed comparisons between this approach and the Tensor Network Matrix Product States
approach nicely reviewed during this conference [19]. The TRG method was also used for finite-
temperature studies of the gauge Ising model [20]. It has also been used to design quantum simu-
lators, [21, 22, 2, 23] or measure the entanglement entropy [24, 25, 26].

The TRG blocking is simple and exact. We briefly remind the procedure for the 2D Ising
model. For each link, we use the character expansion

exp(βσ1σ2) = cosh(β ) ∑
n12=0,1

(
√

tanh(β )σ1
√

tanh(β )σ2)
n12 .
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We then regroup the four terms involving a given spin σi and sum over its two values ±1. The
results can be expressed in terms of a tensor:

T (i)
xx′yy′ = fx fx′ fy fy′δ

(
mod[x+x′+y+y′,2]

)
, (2.1)

where f0 = 1 and f1 =
√

tanh(β ) and x, x′, y, y′ represent the four indices attached to the site. The
delta symbol is 1 if x+ x′+ y+ y′ is even and zero otherwise. The partition function can then be
rewritten exaclty as:

Z = 2V (cosh(β ))2V Tr ∏
i

T (i)
xx′yy′ ,

where Tr mean contractions (sums over 0 and 1) over the links. An important aspect [14] is that the
TRG blocking neatly separates the degrees of freedom inside the block (which are integrated over),
from those kept to communicate with the neighboring blocks. The blocking procedure defines a
new rank-4 tensor T ′XX ′YY ′ where each index now takes four values:

T ′X(x1,x2)X ′(x′1,x
′
2)Y (y1,y2)Y ′(y′1,y

′
2)
=

∑
xU ,xD,xR,xL

Tx1xU y1yLTxU x′1y2yRTxDx′2yRy′2
Tx2xDyLy′1

,

where X(x2,x2) is a notation for the product states e. g. , X(0,0) = 1, X(1,1) = 2, X(1,0) =
3, X(0,1) = 4. The partition function can then be rewritten exactly as

Z = 2V (cosh(β ))2V Tr ∏
2i

T ′(2i)
XX ′YY ′ , (2.2)

where 2i denotes the sites of the coarser lattice with twice the lattice spacing of the original lattice.
Using a truncation in the number of “states" carried by the indices and rescaling all the tensors in
such a way that one of them stays equal to 1, we obtain fixed point equations [14]. The procedure
can be extended easily for models with Abelian symmetries, while non-Abelian symmetries seem
to require Clesch-Gordan coefficients [15].

The idea of “states" can be made more precise by noticing that the partition function can be
expressed in terms of a transfer matrix:

Z = TrTLt . (2.3)

The matrix elements of T can be written as a product of tensors associated with the sites of a
Euclidean time slice (fixed t) and traced over the space indices. In 1+1 dimensions [21]:

T(n1,n2,...nLx )(n
′
1,n
′
2...n

′
Lx )

= ∑
ñ1ñ2...ñLx

T (1,t)
ñLx ñ1n1n′1

T (2,t)
ñ1ñ2n2n′2...

. . .T (Lx,t)
ñLx−1 ñLx nLx n′Lx

.

For the O(2) model with a chemical potential:

T (x,t)
ñx−1ñxnxn′x

=
√

Inx(βτ)In′x(βτ)Iñx−1(βs)Iñx(βs)e(µ(nx+n′x))δñx−1+nx,ñx+n′x .

The Kronecker delta function reflects the existence of a conserved current which can be associ-
ated with the particle number. By taking the time continuum limit, we can use T to define an
Hamiltonian and the eigenstates of T are then in good approximation Hamiltonian eigenstates.
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The blocking procedure can be used for a single time slice [21]. In the O(2) example, the in-
dices run over the entire positive and negative integers. A good approximation for the microscopic
theory can be obtained by just keeping Db = 2nmax + 1 values (“states") centered at the origin.
Starting from this initial approximation and performing blocking without truncation would lead to
a complexity growing exponentially like DNs

b where Ns is the number of spatial sites on a time slice.
However if at each step, we keep projecting to a subspace of dimensions Db, then the complexity
is reduced to a logarithmic growth! However, the errors do not seem to decrease in a uniform way
when Db increases and much remains to be understood about this question.

Note also that partially traced density matrices can be used to calculate the entanglement en-
tropy. We consider the subdivision of the system AB into A and B as a subdivision of the spatial
indices and define ρ̂A ≡ TrBρ̂AB. We can use blocking methods until A and B are each reduced to a
single site. The n -th order Rényi entanglement entropy is defined as:

Sn(A)≡
1

1−n
ln(Tr((ρ̂A)

n)) . (2.4)

This method can be used (for not too large volumes) to calculate the entanglement entropy [24] and
verify the predictions of CFT [25, 26].

3. FAQs

In this section we answer some FAQs related to the tensor formulation. We focus on the case of
the O(2) and Ising models. Generalizations and details will be provided in a forthcoming preprint.

3.1 FAQ1: Do truncation break global symmetries? Answer: No

We consider the example of the O(2) model. The action and the measure of integration are
invariant under the global symmetry θx→ θx +∆, this implies

〈 f (θx1 , . . . ,θxN )〉= 〈 f (θx1 +∆, . . . ,θxN +∆)〉.

Assuming that f is 2π-periodic in all its aguments, it can be expressed in terms of Fourier modes
and

〈exp(i(n1θx1 + . . .nNθxN ))〉= exp((n1 + . . .nN)∆)〈exp(i(n1θx1 + . . .nNθxN ))〉.

From this we conclude that ∑
N
n=1 ni 6= 0 implies 〈exp(i(n1θx1 + . . .+ nNθxN ))〉 = 0. A detailed

analysis shows that this selection rule is due to the current conservation imposed at each site and is
independent of the particular values taken by the tensors. So if we set some of the tensor elements
to zero as we do in a truncation, this does not affect the selection rule.

3.2 FAQ2: Can usual boundary conditions be enforced with tensors? Answer: yes

The most common boundary conditions for spin models are the periodic boundary conditions
(PBC) and open boundary conditions (OBC). These conditions can be encoded in the tensors by
identifying possible modifications when we perform the spin/field integration

PBC allow us to keep a discrete translational invariance. This can be enforced by taking the
tensors translation invariant and assembled in the same way at every site, link etc. This is the
simplest option.
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OBC can be implemented by introducing new tensors that can be placed at the boundary. The
only difference for these new tensors is that there are missing links at boundary sites. In all the
examples we know, it is possible normalize the tensors in such a way that the missing elements can
be taken into account by setting the corresponding missing indices to zero.

It is also possible to define new boundary conditions that only make sense in the reformulation,
for instance fixing some of the indices corresponding to missing elements to values different to zero,
or summing over these. When dual variables can be introduced to make the current conservation
automatic, it is sometimes possible to translate boundary conditions on the dual variables into
conditions for the boundary links mentioned above. Similar considerations can also apply for
gauge models where boundary links have missing plaquettes.

3.3 FAQ3: Can the Ising traces be performed with Grassmann variables? Answer: yes

The local tensor can be incorporated into a “supertensor" which is a function of four Grass-
mann variables attached to each site. We label these four variables with the indices ηL, ηA, ηB ηR,
where L means Left and R means Right. We use a LABR ordering to define

T (η)≡ ∑
nLnRnAnB=0,1

TnLnRnAnBη
nL
L η

nA
A η

nB
B η

nR
R , (3.1)

where (η) is a short notation for (ηL, ηA, ηB ,ηR). Because of the factorization properties (Z2 is
abelian):

T1111 = T1100×T0011 = T0101×T1010 = T1001×T0110, (3.2)

the tensor function exponentiates
T (η) = eT2(η), (3.3)

with
T2(η) = tsηLηR + ttηAηB +

√
tstt(ηLηA +ηLηB +ηAηR +ηBηR). (3.4)

An simple exponential form of the Grassmannian transfer matrix

T({η})≡∑
{n}

T(nA1,...,nANs ,nB1,...,nBNs )
η

nA1
A1 η

nB1
B1 . . .η

nANs
ANs

η
nBNs
BNs

, (3.5)

can be obtained by inserting e+ηR1ηL2 between T (η1) and T (η2) and integrating with
∫

dηL2dηR1

and repeating to the next neighbor. If we use periodic boundary conditions in the σ formulation,
the summation between the last site and the first site requires the insertion of e−ηRNs ηL1 (antiperiodic
condition in space). This Gaussian integration can be performed exactly, however the ordering is
not the “standard Berezin order". The connection with exact results will be discussed in a forth-
coming preprint.

4. Concluding remarks

The tensor reformulation of lattice models with compact fields provides an exact discretization
of the partition function. We expect that if the truncation is not too drastic, the model should keep
its universal properties. This leaves us with a finite system that can be implemented either with a
physical device (analog computing) or a commercial quantum computer (digital computing).
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Following the the analog option, we have used the tensor reformulation to propose QC/S of
the Abelian Higgs model [2, 23]. This is nicely discussed in J. Unmuth-Yockey’s talk which should
appear in these Proceedings. We have reformulated the lattice Abelian Higgs model (scalar QED) in
1+1 dimension in a manifestly gauge invariant way that connects smoothly the classical Lagrangian
formulation used by lattice gauge theorists and the quantum Hamiltonian method used in condensed
matter. Calculations of the Polyakov loop show a remarkable data collapse that survives the time
continuum limit. This collapse could be tested with small volumes. We proposed to use a Bose-
Hubbard (BH) Hamiltonian on a ladder as a quantum simulator for this model. Johannes Zeiher
has designed methods to possibly implement such a ladder structure with equipment available in
Immanuel Bloch’s lab [27]. These two points are illustrated in Fig. 1.

Figure 1: Left: a ladder with one atom per rung: there is tunneling along the vertical direction but not
in the horizontal direction, however there are short range attractive interactions. A parabolic potential is

applied in the spin (vertical) direction. With a color code corresponding to the picture: H̄ =
Ũg
2 ∑i

(
L̄z
(i)

)2
+

Ỹ
2 ∑i(L̄

z
(i)− L̄z

(i+1))
2− X̃ ∑i L̄x

(i). Right: an optical lattice experiment of I. Bloch’s group [27].

Analog simulations are good to provide a large number of identical degrees of freedom and are
typically good to probe universal properties. Better local control could be achieved with quantum
computers. The space-time formulation of the TRG provide inspirational ways to “Trotterize" the
time evolution at real time. It is tempting to force analog devices to evolve sequentially, especially
if the interactions can only be applied for a short time. It would also be very interesting to compare
compact and non-compact models. In the non-compact case, a field cut needs to be introduced
[7, 10]. Note that this makes the perturbative series converge [28].

Acknowledgements: This research was supported in part by the Dept. of Energy under Award
Numbers DE-SC0010113 and DE-SC0019139. We thank Alexei Bazavov, Philipp Preiss,
Shan-Wen Tsai, Judah Unmuth-Yockey, Li-Ping Yang, Johannes Zeiher and Jin Zhang who have
contributed to part of the reviewed material in sections 2 and 4.
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