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We use the Yang-Mills gradient flow to calculate the pseudo-scalar expansion coefficient c∗P(t f ).
This quantity is a key ingredient to obtaining the chiral condensate and strange quark content of
the nucleon using the Lattice QCD formulation, which can ultimately determine the spin inde-
pendent (SI) elastic cross section of dark matter models involving WIMP-nucleon interactions.
The goal, using the gradient flow, is to renormalize the chiral condensate and the strange con-
tent of the nucleon without a power divergent subtraction. Using Chiral symmetry and the small
flow time expansion of the gradient flow, the scalar density at zero flow time can be related to
the pseudo-scalar density at non zero flow time. By computing the flow time dependance of the
pseudo-scalar density over multiple lattices box sizes, lattice spacings and pion masses, we can
obtain the scalar density of the nucleon. Our lattice ensembles are N f = 2+1, PCAC-CS gauge
field configurations, varying over mπ ≈ {410,570,700} MeV at a = 0.0907 fm, with additional
ensembles that vary a≈ {0.1095,0.0936,0.0684} fm at mπ ≈ 700 MeV.
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1. Introduction

The study of nucleon structure and inter-nucleon interactions is important for applications in
beyond the Standard Model physics (BSM). The scalar density nucleon matrix element 〈N|s̄s|N〉,
is of particular interest for dark matter searches [1]. Dark matter is necessary to explain multiple
astrophysical phenomena, with one of the best candidates being weakly interacting massive parti-
cles (WIMPs) theorized within the constrained minimal supersymmetric extension of the Standard
Model (CMSSM) [2, 3]. Direct detection of such particles relies on the fact that they can interact
with nuclei and that we can calculate such cross section accurately.

The scalar quark content of nucleons enters in the spin-independent part of WIMP-nucleon
interactions with a Higgs boson as a mediator. The spin-independent scattering matrix elements are

Figure 1: Wimp-nucleon interaction.

proportional to the numbers of nucleons squared (i.e. coherent scattering) present in a nuclei. We
focus specifically on the strange quark contribution due to the higher mass relative to the valence
quarks but low enough mass as to be more prevalent in the quark sea (given that heavier quarks
are strongly suppressed). The dominant coupling of the Higgs particle to the nucleon will be
accompanied by this scalar matrix element. The spin independent (SI) elastic cross section from
[4] is

σSI,χN ∼
∣∣∣∣∑

q f

Gq f (m
2
χ)
〈
N|q̄ f q f |N

〉∣∣∣∣2, (1.1)

where Gq f is the effective coupling constant between the quark field q f and a WIMP, at scale mχ .
From this equation, we can see that small changes in the scalar content of the nucleon can lead to
large changes in the cross section itself. In order to evaluate the impacts of dark matter detection
experiments accurately, it is crucial to understand and minimize the hadronic uncertainties within
the calculation. To interpret results from experiments, we have to model the WIMP-nucleus cross
sections as accurately as possible.

The strange quark content in nucleons has been computed in lattice QCD using a direct com-
putational approach, and by using the Feynman-Hellman theorem ( see for example [5, 6, 7, 8, 9]).
Here we propose the use of the gradient flow as a tool to control the noise of these calculations and
simplify the subtractions of infinities when going to the continuum due to the elimination (under
the flow) of the mixing between operators with the identity.
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2. Pion Correlators and the Strange content of nucleons

We apply the gradient flow to the quark and gauge fields as described in [10]. For the fermion
fields, the quark fields ψ(x) are transformed to a flowed quark field χ(t f ,x), with χ(0,x) = ψ(x).
The extra “flow time” parameter t f denotes the amount of gradient flow applied. In this proceedings
we call the "flow-time radius"

√
8t f the root-mean-square radius of the flow evolution. With this

in mind, caution is needed when analyzing time scales
√

8t f ≤ t ≤ T −
√

8t f .
We define the pseudo-scalar quark bilinear corresponding to the pion, using the flowed quark

fields, as
Pab(t f ,x) = χ̄

a(t f ,x)γ5χ
b(t f ,x), (2.1)

where a and b are the quark flavor index. We calculate the two-point correlation function

C(t f ,x0) = a3
∑
x

〈
Pab(t f ,x)Pba(0,0)

〉
, (2.2)

and using the correspondent spectral decomposition we obtain

C(t f ,x0) = ∑
m,n
〈m|Pab(t f ,0)|n〉〈n|Pba(0,0)|m〉e−x0Mne−(T−x0)Mm , (2.3)

where T is the time extent of the lattice and x = (x0,x). The lowest lying energy states for m,n
which give a non-zero matrix element for Pab(t f ,0) are the vacuum |0〉 and a single pion state |π〉.
Therefore, in the large Euclidean time approximation 0� x0� T , we have

C(t f ,x0) =〈0|Pab(t f ,0)|π〉〈π|Pba(0,0)|0〉e−x0Mπ + 〈π|Pab(t f ,0)|0〉〈0|Pba(0,0)|π〉e−(T−x0)Mπ + · · ·

=2Gπ,t f Gπe(T/2)Mπ cosh[Mπ(T/2− x0)]+ · · · , (2.4)

where we are neglecting excited states contributions and we assume that
√

8t f � x0� T −
√

8t f .
The last condition guarantees that we can still treat the interpolating field (2.1) local for the purposes
of the spectral decomposition. Results shown in sec. 3 indicate that it is indeed the case alreasy for
x0 ≥ 2

√
8t f and in same cases even for bigger values of the flow-time radius. The amplitudes are

given by Gπ ≡ 〈π|Pab(0,0)|0〉 , Gπ,t f ≡ 〈0|Pba(t f ,0)|π〉, and Mπ is the ground state mass of the
pion. As, under the assumptions discussed above, all the flow time dependence lies in the matrix
element Gπ,t f , we write the final form as

C(t f ,x0) =2A(t f )cosh[Mπ(T/2− x0)], (2.5)

where A(t f )≡ Gπ,t f Gπe(T/2)Mπ . The small flow time expansion [11] of the pseudo-scalar density

Pab(t f ,x) = cP(t f )Pab(0,x)+O(t f ). (2.6)

implies that we can determine the expansion coefficient cP(t f ) from

cP(t f ) =
Z2

χA(t f )

ZPA(0)
=

Z2
χGπ,t f

ZPGπ

+O(t f ), (2.7)

Where Zχ is the wave function renormalization for flowed fermion field and ZP is the standard
renormalization constant of Pab(0,x), both determined in a given scheme. As described in ref. [12],
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using the short flow-time expansion of the scalar density together with chiral symmetry for the
continuum theory, one obtains that the vacuum subtracted correlation function

Csub(t f ,x) =
[〈

Ns̄(t f ,x)s(t f ,x)N̄
〉
−
〈
s̄(t f ,x)s(t f ,x)

〉
〈NN̄〉

]
, (2.8)

evaluated at non-vanishing flow-time is proportional to the physical scalar strange content, Csub(0,x),
of the nucleon N

Csub(t f ,x) = cP(t f )Csub(0,x)+O(t f ) (2.9)

up to corrections of higher powers in t f reflecting contributions from higher dimensional operators.
Therefore we can determine the strange quark content between nucleons computing the sub-

tracted matrix element Csub(t f ,x) at non-vanishing flow time and then match it with the physical
one at t f = 0 computing the expansion coefficient cP(t f ). We also remark that one can perform the
continuum limit at fixed physical value of the flow time t f , without determining the renormalization
constant Zχ in eq. (2.7). In fact it simplifies with the renormalization constant of the scalar density
at non-zero flow time. Perturbation theory can give us a first estimate of the flow time dependence
of cP(t f ) [10, 13]

cP(t f )∼ (b0ḡ2)−8/9{1+O(ḡ2)}, (2.10)

where ḡ is the renormalized coupling at a scale µ = 1/
√

8t f .

3. Results

Determination of the coefficient cP(t f ) requires a precise calculation of the pion two-point
correlation function, for which the sink pion operator has the gradient flow applied to it. These cal-
culations were performed on 6 ensembles, three of which have varying spacings with almost equal
volume and pion mass mπ . These were used to study discretization effects. The remaining three
have varying mπ and were used to perform a chiral extrapolation. Our simulation were performed
with N f = 2+ 1 lattices from the ILDG [14], using a non-perturbatively O(a)-improved Wilson
fermion action, on a Iwasaki gauge action. A summary of the lattice parameters for all ensembles
can be found in Table. 1.

The first step after computing the two-point correlator with flowed sink defined in eq. (2.4), is
to find a region in source-sink separation x0 for which the condition 0� x0� T of ground-state
dominance, and the flow time condition

√
8t f � x0� T −

√
8t f of field locality, are satisfied. To

be conservative we have taken the largest value of the flow time t f = t̄ f we have used to compute
the 2-point function (2.4) and we have determined the effective mass

M(t f = t̄ f ,x0) =
1
a

log
[

C(t f = t̄ f ,x0)

C(t f = t̄ f ,x0 +a)

]
. (3.1)

We find a region in x0 that guarantees a ground-state dominance, for t f = t̄ f and describe it with
the time exclusion parameter tcut . In other words, the region x0 ∈ [0, tcut ]∪ [T − tcut ,T ] is excluded
from the fit in the two-point correlation function. We then keep fixed tcut and determine the effective
mass (3.1) for smaller values of t f . The corresponding effective mass determination is shown in
Fig. 3. For fixed value of tcut we observe that the effective mass does not depend on the flow-time.
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Ensemble A1 A2 A3 M1 M2 M3

(L/a)3×T/a 163×32 203×40 283×56 323×64 323×64 323×64
a [fm] 0.1095 0.0936 0.0684 0.0907 0.0907 0.0907
L [fm] 1.944 1.960 1.918 2.9 2.9 2.9

2tcut/T 0.73 0.62 0.68 0.72 0.72 0.72
NG 799 799 799 399 399 399

Mπ [MeV] 738.1(6.6) 674.3(2.8) 659.0(2.7) 699.7(3.6) 574.6(3.3) 409.1(2.5)
t0/a2 1.3629(16) 2.2387(22) 4.9886(65) 2.5377(16) 2.4000(11) 2.2591(12)

Table 1: Parameters for all ensembles used in this proceedings. The ensembles denoted as A1,2,3 are used
to study discretization effects and the ensembles denoted by M1,2,3 the pion mass dependence of our results.
NG refers to the number of gauge fields used, and the Mπ values are obtained from the analysis of our 2-
point function (2.4) at t f = 0. The fit parameter tcut is described in the main text and it is compared in this
table with half the time extent of the lattice. We also show the results for the scale parameter t0/a2 for each
ensemble (computed as described in [15]).
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Figure 2: Effective mass M(t f ) fit parameter results from fits over x0 in eq. 3.1 for the Ai (left) and Mi (right)
ensembles. The value tcut refers to the region x0 ∈ [0, tcut ]∪ [T − tcut ,T ] excluded from the fit.

χ2
pd f a b c

M1 1.10(76) −1.3284(16) 0.47895(56) 0.00227(98)
M2 1.5(1.1) −1.3149(12) 0.48126(46) −6.79(68)×10−3

M3 0.56(52) −1.30(0.00) 0.48489(29) −1.61(4)×10−2

A1 1.47(29)×10−4 −1.6202(23) 0.66870(90) 0.1307(13)
A2 0.090(90) −1.3283(16) 0.49440(59) 8.59(8.51)×10−4

A3 0.13(12) −0.957(1) 0.30065(27) −0.193(1)

Table 2: Resulting fit parameters from fits of c∗P(t f ) = 1+a+bt0/t f + ct f /t0, shown in Fig. 3.
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Figure 3: Ratio of flowed to un-flowed fit parameter A(t f )/A(0) for both the Ai (left) and Mi (right) ensem-
bles. The legend value tcut refers to the region x0 ∈ [0, tcut ]∪ [T − tcut ,T ] excluded from the fit. The solid
lines indicate the fit ranges used to obtain the values in Tab. 2. Dashed lines are shown just to visualize the
agreement of the fit results with the data outside the fit range.

This indicates that we have found the window in tcut < x0 < T − tcut and in
√

8t f < x0 < T −
√

8t f ,
where we can fit in x0 the correlator 2.5 with fit parameters A(t f ), Mπ for every flow time t f .

From the fit parameter A(t f ) we construct the coefficient

c∗P(t f )≡
A(t f )

A(0)
=

ZP

Z2
χ

cP(t f ) . (3.2)

We present the results for c∗P(t f ) with respect to the flow time t f /t0 in Fig. 3 for the Ai (left) and
Mi (right) ensembles. We introduce the fixed scale t0 which is computed using the gradient flow
applied to the energy (using the clover definition for the gauge field tensor) for each ensemble. The
method is described in detail in [15], and the individual values of t0/a2 can be found in Table. 1.

From these results, we perform a phenomenological fit of the type c∗P(t f ) = 1+a+bt0/t f + ct f /t0
in the flow-time ranges shown as solid lines in Fig. 3 over t f /t0. The resulting fit parameters a, b
and c are shown in Table. 2. The first observation we make is that the continuum form of the flow-
time dependence seems to be largely affected by discretization effects. The coefficient b in our fit
formula should vanish in the continuum limit. Any non-zero value of b parametrizes a 1/t spurious
dependence in the short flow-time expansion of the pseudo-scalar density that should vanish in the
continuum limit. Additionally we observe cutoff effects in the coefficient a which are presumably
O(a2Λ2) unavoidable even in the O(a) improved theory. We also observe substantial contributions
from higher dimensional operators parametrized by the fit parameter c. We observe a very small
pion mass dependence in both fit parameters a and b.
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4. Conclusion

In these proceedings we have presented the results of the pseudo-scalar expansion coefficient
c∗P(t f ) with respect to the gradient flow time t f using ensembles with varying lattice spacing and
pion mass. We observe discretization effects for a < 0.1095 fm, which modify the expected form
of the continuum short flow-time expansion. It is unclear at the moment if those cutoff effects
will be greatly reduced once the expansion coefficient is combined with the bare subtracted matrix
element evaluated at the same flow times. We consider this as a first step for the determination of
the scalar content of the nucleon without power divergent subtractions.
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