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1. Large N, and thermodynamics

The large N, expansion, as originally proposed by ’t Hooft [1], offers a controlled, analytic
description of the nonperturbative dynamics of QCD. Large N, reasoning asserts that when one
allows the number of colors N, to vary while holding the ’t Hooft coupling A = g>N. constant,
any observable has a characteristic scaling with N, up to 1/N, corrections. The coefficients of this
expansion contain nonperturbative physics, but the scaling with N, can be determined using simple
diagrammatic counting rules. This ansatz has been confirmed in an extensive literature of lattice
studies which found that many spectroscopic observables, thermodynamic observables, and simple
matrix elements scale with N, as expected [2].

The value of the large N, approach is that it can give us intuition about why QCD behaves the
way it does. Taking the ’t Hooft limit N, — oo, QCD simplifies and analytic predictions become
possible. For example, in the large-N, limit, mesons are infinitely narrow, and the quark model and
the OZI rule become exact statements [3]. This resembles nature, where mesons are long-lived and
the quark model and OZI rule are useful but approximate.

However, thermodynamics at large N. does not resemble the thermodynamics of QCD. Be-
cause there are ~ N2 gluonic degrees of freedom but only N, fermionic ones, as N, becomes large
the gluons dominate the dynamics and the fermions “quench out”. Thus, the large-/N, behavior of
QCD is that of pure gauge theory. The N, — oo limit of quenched QCD exhibits a first-order transi-
tion at 7. ~ 260 MeV [4], while real-world N. = 3 QCD exhibits a crossover around 7, ~ 155 MeV
[5]. Is this discrepancy a failure of large-/N, reasoning, or are we being somehow naive in taking
the N, — oo limit?

We need to include dynamical fermions in order to test whether large N. QCD behaves thermo-
dynamically like pure gauge theory. This motivates our present study: to the best of our knowledge,
all studies of thermodynamics at large N, thus far have been performed in the quenched approxi-
mation, which assumes that pure gauge theory is the correct limit of QCD. In fact, with only one
exception known to us [6], all studies of large N, phenomena thus far have used the quenched
approximation. Whether this is in general a valid approach to study large N. QCD ought to be
tested, and thermodynamics is a particularly clean testbed: large NV, provides several qualitative
predictions for thermodynamics, to be discussed below.

We expect the computational cost to scale as roughly N> holding all else fixed, so we limit this
initial investigation to N, = 3,4,5 and leave higher N, for future work. We exclude SU(2) from
our study because both the chiral symmetry breaking pattern in the chiral limit and the order of the
deconfinement transition in the pure gauge limit are different than for N. > 3. At present we have
only investigated Ny = 2. Our results below include data from only 123 x 6 lattices.

2. Numerical Methods

2.1 Data Generation

We generate all data using variants of MILC adapted to run arbitrary N.. We use hybrid Monte
Carlo (HMC) to generate gauge configurations. For the gauge sector, we use the unimproved
Wilson action. For the fermions, we use the clover-improved Wilson action constructed from
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nHYP-smeared fat links with the usual choice of smearing coefficients [7]. We set the clover
coefficient ¢y, = 1, a choice known to work well with nHYP smearing [8].

The simulations are completely ordinary. We compute screening masses by fitting spatial-
direction correlators. We compute spectroscopic observables using valence compound boundary
conditions (also known as the “periodic plus antiperiodic” or “P+A” trick) to effectively double the
spatial extent of our lattices [9]. All quark masses in the following discussion are the axial Ward
identity (AWI) quark mass, computed in the usual way. The axial Ward identity is insensitive to
finite volume effects, so we use the AWI quark mass computed on finite-temperature lattices to es-
timate its zero-temperature value. We compute gradient-flowed observables using the unimproved
Wilson flow. In this work we show only preliminary results.

2.2 Automation

Exploring enough Wilson phase diagrams to study thermodynamics at large N, is a formidable
task. Every distinct combination of (N,, Ny, N;) corresponds to a different phase diagram, and we
must vary all of these to get control over the chiral, continuum, and N, — oo limits. Even look-
ing at only 123 x 6 for three values of N., we have already generated and analyzed data for 321
independent ensembles, with a typical ensemble having ~ 60 configurations. Automation is neces-
sary to render this study logistically tractable. To this end, we have constructed a fully-automated
generation and analysis pipeline capable of exploring Wilson phase diagrams with minimal human
intervention. Up to a handful of exploratory ensembles run by hand and tuning system metaparam-
eters, all data used in this study have been generated automatically.

A closed loop of three distinct components comprise our system. First, a lattice-specific scien-
tific workflow management system (WMS) [10] coordinates the execution of HMC, spectroscopy,
and gradient flow binaries. The WMS enables automatic detection of common failures, such as too-
low acceptance rates and unitarity violations, and allows for limited automatic recovery from such
errors. For further discussion, see Ref. [11]. Second, raw data in output files is parsed and loaded in
to a relational (PostgreSQL) database. With our data centrally organized and rigidly structured, we
can automatically maintain an analysis which starts from raw data and yields useful ensemble-level
observables like quark masses and phase diagnostics. Third, an automated phase diagram explorer
(APDE) reads the end products of the analysis from the database. Armed with our current best
understanding of each phase diagram, the APDE considers a grid over potentially-interesting pa-
rameters (S8, k) and applies simple criteria [e.g.: m, > 0, m, not too large, not too deep in confined
or deconfined phase, nearby enough to an already-equilibrated ensemble to reduce equilibration
costs] to determine which grid points are interesting and explorable. The APDE then specifies new
simulation points and directs the WMS to run those simulations, closing the automation loop.

We use the Polyakov loop at long flow time to diagnose the thermodynamic phase of our
ensembles, a choice which is particularly convenient for automation [12]. We take an ensemble to
be “confined” if |(P)|/N,. < 0.25, “deconfined” if | (P)| /N, > 0.75, and “ambiguous” otherwise, all
at flow time  /a> = 2. This is not intended to be a replacement for more quantitative determinations
of the location of the (pseudo)critical curve, such as determining the location of the peak in some
susceptibility. However, this approach is sufficient to be used to generate data in the neighborhood
of the transition to be used in later, more precise analyses.
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3. Preliminary Results
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Figure 1: Phase diagrams for N, = 3,4,5. Blue dots are confined ensembles, yellow Xs are deconfined en-
sembles, and green diamonds are phase-ambiguous ensembles, with all phases diagnosed using the Polyakov
loop at long flow time. The colored band in each diagram covers the phase-ambiguous region where it is
well-determined, with the color corresponding to N, as in Fig. 2.

Figure 1 shows our current results for phase diagrams for N. = 3,4,5 with Ny = 2 flavors on

123 x 6 lattices. For N, = 4 and 5, we are blocked from exploring the transition at lighter quark

masses (i.e., “northwest”) by an apparent bulk transition, to be investigated further in future work.
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Figure 2: Locations of thermal transitions in bare parameter space for N, = 3,4, 5, plotted together versus 3
(top left panel) and B/N? (top right and bottom panels). Colored dots are ambiguously-phased ensembles,
as determined by Polyakov loops at long flow time. Colored bands are phase-ambiguous regions (same as
the same-colored bands in Fig. 1). Together, these provide a rough estimate of the location of the thermal
transition. When plotted versus 3 /NCZ, the diagrams collapse on top of one another, up to 1/N, corrections.
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For the large-N, world to resemble the N, = 3 world, physics must remain constant at constant
't Hooft coupling A = g>N,, up to 1/N, corrections. Meanwhile, the fermionic part of the action
does not depend explicitly on N, and so we expect that we do not need to adjust m,, to keep leading-
order physics constant as we vary N,. Translating to lattice couplings, we expect to see constant
physics at constant (8 /N2, k) up to 1/N,. corrections. Thus, we expect Wilson phase diagrams for
different N, to collapse on top of one another when plotted in terms of these variables.

As illustrated in figure 2, this is indeed what we observe. At top left, the transition curves for
different N, are widely separated when plotted versus (3, k). At top right, plotting instead versus
(B/N?, k), we see the transition lines cluster together. The bottom panel zooms in on the top-right
plot: we see that the transition lines are still slightly split. Consistent with splitting due to 1/N,
corrections, the N. = 3 and 4 lines are further separated than the N. =4 and 5 lines.

3.2 Fermion Independence

In QCD, observables typically have some dependence on the quark mass m,. However, we
expect the theory to act increasingly like pure gauge theory as N, becomes large. Thus, the value of
any observable should lose its m, dependence as N, — oo. A slightly stronger prediction is that any
observable should converge to its pure gauge value, regardless of the value of m,, as N, becomes
large. Consistent with these predictions, the slope of each transition line in the bottom panel of
Fig. 2 appears to be growing steeper with increasing N, and thus less sensitive to k.
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Figure 3: Each point corresponds to a fixed k in the indicated-N, phase diagram where the phase-ambiguous
region is bracketed in 8 by a confined and deconfined ensemble. The boxed ensembles at left are two slices
that have roughly constant am, as N, is varied. These are plotted at right versus 1/N, alongside pure-gauge
data taken from Refs. [4] and [13]. An apparent bulk transition blocks access to lighter am, for N. > 3.

We attempt to make this more quantitative in Fig. 3. On each phase diagram, we find fixed ks
where a confined ensemble and a deconfined ensemble bracket the phase-ambiguous region. For
each bracketing pair, we estimate 3. and am,, as the average between the two ensembles, with half
the spread as the error. From 3. we compute the pseudocritical bare *t Hooft coupling A. = N2 /23,
which has no leading N. dependence. We plot A. versus am,, in the left panel of Fig. 3, where we
see that the slope indeed becomes shallower with increasing N.. The boxed ensembles in the left
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panel correspond to lines of roughly constant quark mass. In the right panel, we plot A, versus 1/N,
for these lines alongside the same curve for pure-gauge theory [4, 13]. The two constant mass lines
are similar, and could plausibly converge with the pure gauge line as N, — oo.

3.3 Pure-gauge-like Transition

Pure gauge theory for N, > 3 exhibits a first-order deconfinement transition [4], while in QCD,
the transition at physical quark masses is a crossover [5]. If pure gauge theory is the m, — oo limit of
QCD, then there must exist some critical quark mass mg G where the QCD-like crossover becomes a
pure-gauge-like first-order transition. We expect the theory to behave increasingly like pure gauge
theory as we increase N, so we expect mgG — 0 as N, — oo. Meanwhile, stability analyses of the
chiral transition [14] predict that it will be second order for Ny = 2 in the chiral limit for any N,. It
is ambiguous what will happen to the transition in the exact m, = 0 limit as N, — oo.

Our current data set, with only one aspect ratio, is insufficient to perform a volume scaling
analysis that would allow us to say something conclusive about the orders of the transitions that
we observe. However, we see no obvious indications of first-orderness anywhere in our data. All
ensembles we have generated have equilibrated quickly, without any tunneling events or other
signs of metastability. All observables we have examined are continuous across the transition. The
Polyakov loop at long flow time interpolates smoothly between nearly-zero in the confined phase
and its maximum value in the deconfined phase, rather than exhibiting binary behavior. All of
this is different from what we observed in a previous study of a system with a strongly first-order
transition [15]. If we are indeed observing crossovers, then we may bound amf;G = 0.5.

4. Outlook

Enabled by automation, we can explore in many directions. Phase diagrams for N, > 6 will
enable us to perform continuum a — 0 extrapolations and move us away from the bulk transitions
blocking exploration in N, > 3. Interpolating more finely near the transitions will permit us to
look for peaks in susceptibilities, allowing us to determine the location of pseudocritical lines more
quantitatively. Different aspect ratios than N;/N, = 2 will allow us to investigate finite volume ef-
fects in our data, which the Eguchi-Kawai volume reduction argument says should become smaller
as NV, increases [16]. These would also allow for volume scaling analyses to more carefully deter-
mine transition order. Zero-temperature data at bare parameters near the transitions will provide
the lattice spacing and the AWI quark mass without contamination by finite-temperature effects. If
bulk transitions continue to be an issue at longer »,, it may be worth considering improved actions.

Our investigation is currently limited to the line of constant Ny = 2, but theories with other N
are also interesting. For example, Ny = 3 is another potentially-interesting limit of QCD. Addition-
ally, analytic predictions exist for the Veneziano limit N, — o holding Ny /N, fixed [17]; exploring
the grid of low-lying N. and Ny would allow us to extrapolate to this limit for various Ny/N,.
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