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1. Introduction

In finite density QCD at low temperature and high density, it is conjectured that there are
various interesting phases such as the quark matter phase, the color-superconductor phase and so
on. Exploring these phases based on full QCD simulation is important not only for purely aca-
demic reasons but also for understanding the interior structure of neutron stars. However, standard
Monte Carlo methods face with the sign problem, which has been hindering the development in
this direction so far.

The complex Langevin method (CLM) [1, 2] has been studied as a promising approach to this
problem. The idea is to extend the stochastic quantization based on the Langevin equation to the
cases with a complex action by complexifying the dynamical variables, where holomorphicity has
to be respected in defining the drift term and the observables. The biggest problem of this approach
is that the obtained results are not guaranteed to be correct. However, in recent years the reasons
for the failure have been clarified [3, 4, 5], and various techniques [6, 7, 8] have been developed to
extend the applicability of this method. Thanks to these developments, finite density QCD in the
heavy dense limit [7, 9, 10] and at high temperature [11, 12] has been studied successfully.

We attempt to extend this success to the low temperature region with reasonably small quark
mass, where the transition to the nuclear matter phase and subsequently to the quark matter phase
at larger chemical potential µ is anticipated. Extending the previous work [13] on a 43 ×8 lattice,
we perform simulations with four-flavor staggered fermions on a 83 × 16 lattice with quark mass
m= 0.01 and m= 0.05. (See refs. [14] for related work with two-flavor staggered fermions.) Rather
surprisingly, we find that the criterion for correct convergence [5] is satisfied within a wide range
of µ without using the deformation technique [8] unlike the previous work [13]. In particular, the
baryon number density exhibits a plateau as a function of µ , which is consistent with the formation
of eight baryons, and it starts to grow gradually at some µ . We obtain similar results for the two
values of the quark mass although the plateau behavior becomes clearer for m = 0.01.

We also simulate the phase quenched model with the same set of parameters using the standard
RHMC algorithm. Here we obtain quite different results for the two values of the quark mass m
unlike the results for the full model. At m = 0.01, the baryon number density exhibits a different
plateau with lower height at smaller values of µ , which is consistent with the formation of four
mesons considering that µ in the phase quenched model actually corresponds to the isospin chem-
ical potential. Thus we find a clear difference between the results of the CLM and those for the
phase quenched model at m = 0.01. At m = 0.05, on the other hand, the baryon number density
behaves quite similarly for the two models.

The rest of this paper is organized as follows. In section 2 we explain briefly how we apply
the CLM to finite density QCD and how we judge the validity of the results. In section 3 we show
the results obtained by the CLM and compare them with the results for the phase quenched model.
The section 4 is devoted to a summary and discussions.

2. Complex Langevin method for finite density QCD

In this paper we study finite density QCD with Nf = 4 staggered fermions. The partition
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function is given as

Z =
∫

dU detM [U,µ]e−Sg[U ] , (2.1)

where Ux,ν ∈ SU(3) are the link variables and Sg[U ] is the plaquette action defined by

Sg[U ] =−β
6 ∑

x
∑

ν ̸=ρ
tr(Ux,νUx+ν̂ ,ρU−1

x+ρ̂,νU−1
x,ρ ) . (2.2)

The determinant detM[U,µ], which is obtained by integrating out the fermions, is complex when
the chemical potential µ is nonzero. This makes the standard Monte Carlo simulation difficult due
to the sign problem, which becomes severer as µ is increased.

In order to overcome this problem, we apply the CLM, which is a complex extension of the
stochastic quantization based on the Langevin equation. In this method, the link variables Ux,ν are
complexified as Ux,ν ∈ SL(3,C), and accordingly the drift term and the observables, which are
functions of Ux,ν , have to be extended to functions of Ux,ν holomorphically. The complexified link
variables are updated according to the complex version of the Langevin equation

Ux,ν(t + ε) = exp
[
i
(
−εvx,ν(U (t))+

√
εηx,ν(t)

)]
Ux,ν(t) , (2.3)

where t is the discretized Langevin time and ε is the stepsize. The drift term vx,ν(U ) in eq. (2.3) is
defined by the holomorphic extension of

vx,ν(U) = ∑
a

λa
d

dα
S(eiαλaUx,ν)

∣∣∣∣
α=0

, (2.4)

where S[U ] = Sg[U ]− lndetM[U,µ] and λa (a = 1, · · · ,8) are the SU(3) generators normalized by
tr(λaλb) = δab. The noise term ηx,ν(t) in eq. (2.3), which are 3× 3 traceless Hermitian matrices,
are generated with the Gaussian distribution exp(−1

4 tr{η2
x,ν(t)}).

The expectation value of an observable O(U) can be obtained as

⟨O(U )⟩= lim
T→∞

1
T

∫ t0+T

t0
dt ⟨O(U (t))⟩η , (2.5)

where the expectation value ⟨ · ⟩η appearing on the right-hand side should be taken with respect
to the Gaussian noise η , and t0 should be sufficiently large to achieve thermalization. The effect
of the complex fermion determinant is included in the complex Langevin process (2.3) through the
drift term, and there is no need for reweighting unlike the path-deformation approach such as the
generalized Lefschetz-thimble method.

It is known that the CLM fails to yield correct results in some cases. However, we can judge
whether the obtained results are correct or not in the following way [5]. Let us define the magnitude
of the drift term as

v =

√
1
3

max
x,ν

tr(v†
x,νvx,ν) , (2.6)

and consider its probability distribution p(v). If p(v) falls off exponentially or faster, the result is
reliable. A slower fall-off such as a power law can be caused either by the excursion problem [3]
or the singular-drift problem [4]. The first problem occurs when the link variables Ux,ν become
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Figure 1: The probability distribution p(v) of the drift term are plotted for various µ with m = 0.01 (Left)
and m = 0.05 (Right).

too far from SU(3) matrices, and the second one occurs when the Dirac operator has near-zero
eigenvalues frequently because the drift term involves the inverse of the Dirac operator.

In order to suppress the excursion problem as much as possible, we perform the gauge cooling
[7] as follows. (See ref. [5] for justification.) Let us define the unitarity norm as

N =
1

12NV
∑
x,ν

tr(U †
x,νUx,ν −1) , (2.7)

where NV is the number of lattice sites. This quantity measures how far Ux,ν is from SU(3) config-
urations, and it vanishes if and only if all of Ux,ν are unitary matrices. After updating Ux,ν by the
complex Langevin equation (2.3), we perform a complexified gauge transformation

Ux,ν → gxUx,νg−1
x+ν̂ , where gx ∈ SL(3,C) (2.8)

in such a way that the unitarity norm is minimized.

3. Results

We have performed simulations on a 83×16 lattice with β = 5.7 and the quark mass m = 0.01
and 0.05. The Langevin stepsize is chosen initially as ε = 10−4, which is reduced adaptively

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
4
6

Exploring the phase diagram of finite density QCD at low temperature by the CLM Yuta Ito

when the magnitude of the drift exceeds certain threshold [6]. We have made (5 ∼ 15)×105 total
Langevin steps for each set of parameters.

Let us first check the validity of the results obtained by the CLM. In Fig. 1 (Left), the probabil-
ity distribution p(v) of the drift term is plotted for various µ with m = 0.01. From these plots, we
find that p(v) for µ = 0.1 and 0.325 ≤ µ ≤ 0.475 shows a clear exponential fall-off and therefore
the simulations are reliable. On the other hand, p(v) for 0.15 ≤ µ ≤ 0.3 and µ = 0.5 shows a power
law fall-off, which is actually caused by the contribution from the fermion determinant. Thus, we
find that the singular-drift problem occurs in these parameter regions. Similarly, in Fig. 1 (Right),
we show the probability distribution p(v) for various µ with m = 0.05, from which we find that the
results for 0 ≤ µ ≤ 0.2 and 0.35 ≤ µ ≤ 0.47 are reliable. As in the m = 0.01 case, the power law
fall-off seen in these plots is due to the singular-drift problem.

Fig. 2 shows the baryon number density

⟨n⟩= 1
3NV

∂
∂ µ

lnZ (3.1)

obtained by the CLM for m = 0.01 (Left) and m = 0.05 (Right), where we plot only the reliable
data judging from the probability distribution of the drift term. We also plot the RHMC results for
the phase quenched model for comparison.
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Figure 2: The baryon number density is shown as a function of the chemical potential µ for m = 0.01 (Left)
and m = 0.05 (Right). The squares represent the CLM results which are reliable judging from the probability
distribution of the drift term. The circles represent the RHMC results for the phase quenched model.

As far as we can see from the reliable data, the results obtained by the CLM do not depend
much on the quark mass. Most strikingly, we observe a clear plateau for m = 0.01 in the region
0.325 ≲ µ ≲ 0.425, which is visible for m = 0.05 as well although it is less clear. We can also
see some tendency of ⟨n⟩ starting to grow gradually at larger µ . On the other hand, the results for
the phase quenched model depend drastically on the quark mass unlike the full model results. In
particular, for m = 0.01 we observe a lower plateau at 0.275 ≲ µ ≲ 0.35, which does not appear
for m = 0.05.

In order to understand these results, it is important to note that the lattice spacing for β = 5.7
and m = 0.01 with Nf = 4 staggered fermions is obtained as a ∼ 0.045 fm, while it is slightly larger
for m = 0.05. Therefore the physical spatial extent of our lattice is much smaller than the QCD
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scale and the physical temperature is actually quite high. The observed behavior which mimics that
in the low temperature regime in a large volume may be understood as a result of the temperature
being lower than the scale of the spatial extent.

Another important thing to note is that the phase quenched model may be regarded as a full
model with µ being interpreted as the isospin chemical potential due to detD(−µ) = (detD(µ))∗,
and in that case ⟨n⟩ represents ⟨n⟩ = ⟨(nu − nd)/3⟩, where nu and nd represent the “up-quark”
density and the “down-quark” number density, respectively.

The plateau in the phase quenched model may therefore be identified as a state with 4 mesons,
which corresponds to ⟨n⟩= 4×2/3/83 = 0.0052. The reason why we observe the plateau instead of
smooth increase of the isospin density as is typically observed in previous work [15] is presumably
due to the small physical volume of our lattice. The plateau in the full model observed by the CLM,
on the other hand, may be identified as a state with 8 baryons, which corresponds to ⟨n⟩= 8/83 =

0.0156. The density of this state is much higher than what one would expect for the nuclear matter,
but this may be also due to the severe finite volume effects.
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Figure 3: The expectation value of the Polyakov loop is plotted against µ for m = 0.01 (Left) and m = 0.05
(Right). The squares represent the CLM results which are reliable judging from the probability distribution
of the drift term. The circles represent the RHMC results for the phase quenched model.

In Fig. 3 we plot the expectation value of the Polyakov loop, which is found to be small at
µ ≲ 0.45 for both models with m = 0.01 and m = 0.05 despite the high temperature. This is
considered as a consequence of the small spatial extent of our lattice.

4. Summary and discussions

In this paper we have made an attempt to extend the success of the CLM in finite density
QCD to the lower temperature region with reasonably small quark mass using four-flavor staggered
fermions on a 83 × 16 lattice. The physical size of our lattice is small due to the choice β = 5.7,
which is motivated by the necessity to avoid the excursion problem [14]. With that in mind, our
results can be summarized as follows.

First we have investigated the validity of the CLM based on the probability distribution of
the drift term. Interestingly, there is a region in which the CLM works even at large µ . This
is in contrast to the situation of the previous work on a 43 × 8 lattice [13], where the use of the
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deformation technique [8] was necessary to avoid the singular-drift problem in the large µ region.
In fact, when µ is chosen within the region of validity of the CLM, the eigenvalue distribution of
the Dirac operator exhibits a gap along the real axis, and therefore the singular-drift problem does
not occur.

Second the baryon number density exhibits a plateau as a function of the chemical potential,
which may be identified as the formation of the nuclear matter. The gradual increase of the baryon
number density starting at the end of the plateau suggests a continuous transition to the quark
matter. The comparison with the RHMC results for the phase quenched model reveals a clear
difference in the case of m = 0.01. These results encourage us to increase the lattice size further.
Simulations on a 164 lattice are on-going.
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