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1. Introduction

The Weinberg angle or weak mixing angle θW is the parameter of the Standard Model of
particle physics that parametrizes the mixing between electromagnetic and weak interactions

sin2
θW =

g′2

g2 +g′2
, e = gsinθW = g′ cosθW (1.1)

where g and g′ are the SU(2)L and U(1)Y couplings, respectively. As a consequence of the running
with energy of g and g′, the Weinberg angle is a function of the energy scale Q2

sin2
θW(Q2) = sin2

θW
[
1+∆sin2

θW(Q2)
]
, (1.2)

where sin2
θW = sin2

θW(Q2 = 0) = 0.23871(9) [1] is the value in low-energy limit.In particular,
the leading hadronic contribution to the running is given by [2, 3]

∆had sin2
θW(Q2) =− e2

sin2
θW

[
Π

γZ(Q2)−Π
γZ(0)

]
, (1.3)

proportional to the subtracted hadronic vacuum polarization (HVP)

(QµQν −δµνQ2)ΠγZ(Q2) = Π
γZ
µν(Q

2) =
∫

d4xeiQ·x 〈 jZ
µ(x) jγ

ν(0)
〉

(1.4)

of the electromagnetic current jγ

µ and the vector part of the neutral weak current jZ
µ

jγ

µ =
2
3

ūγµu− 1
3

d̄γµd− 1
3

s̄γµs+
2
3

c̄γµc, (1.5a)

jZ
µ = j3

µ − sin2
θW jγ

µ , j3
µ =

1
4

ūγµu− 1
4

d̄γµd− 1
4

s̄γµs+
1
4

c̄γµc. (1.5b)

The vacuum polarization ΠγZ is directly accessible to lattice computations [4, 5]. The computation
is similar to that of the leading HVP contribution to the anomalous magnetic moment of the muon
and, as in that case, different methods are available, such as the four-momentum approach or the
time-momentum representation (TMR) method [6].Using the latter, ΠγZ is given by

Π
γZ(Q2)−Π

γZ(0) =
∫

∞

0
dx0 GγZ(x0)K(x0,Q2), K(x0,Q2) = x2

0−
4

Q2 sin2
(

Qx0

2

)
, (1.6)

where GγZ(x0) is the zero-momentum projection of the correlator

GγZ(x0) =−
1
3 ∑

k=1,2,3

∫
d3xGγZ

kk (x), GγZ
µν(x) =

〈
jZ
µ(x) jγ

ν(0)
〉
. (1.7)

Writing explicitly Wick’s contractions results in both connected and disconnected contributions

GγZ
µν(x) =

(
1
4
− 5

9
sin2

θW

)
C`,`

µν(x)+
(

1
12
− 1

9
sin2

θW

)
Cs,s

µν(x)

+

(
1
6
− 4

9
sin2

θW

)
Cc,c

µν(x)−
1
9

sin2
θWD`+As,`−s

µν (x), (1.8)

where A = 3/(4sin2
θW)−1, the disconnected charm contribution has been neglected, and

C f1, f2
µν (x) =−

〈
Tr
{

D−1
f1
(x,0)γµD−1

f2
(0,x)γν

}〉
, (1.9a)

D f1, f2
µν (x) =

〈
Tr
{

D−1
f1
(x,x)γµ

}
Tr
{

D−1
f2
(0,0)γν

}〉
. (1.9b)
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2. The CCS method

As an alternative to the TMR method, in this work we also implement the recently proposed
Lorentz-covariant coordinate space (CCS) method [7]. We rewrite the subtracted vacuum polariza-
tion as a covariant integral in four-dimensional coordinate space

Π
γZ(Q2)−Π

γZ(0) =
∫

d4xGγZ
µν(x)Hµν(x) = ∑

i=1,2

∫
d4xgi(x)Hi(|x|), (2.1)

g1(x) =−δµνGγZ
µν(x), g2(x) =

xµxν

x2 GγZ
µν(x), (2.2)

where we used the Lorentz structure of the CCS kernel

Hµν(x) =−δµνH1(|x|)+
xµxν

x2 H2(|x|), Hi(|x|) = x2H̄i(|Q||x|), (2.3)

that can be expressed in term of generalized hypergeometric functions 2F3

H̄1(z) =
z2

4608
[
24 2F3

(
1,1;2,3,3;−z2/4

)
−20 2F3

(
1,1;2,3,4;−z2/4

)
+3 2F3

(
1,1;2,3,5;−z2/4

)]
,

(2.4a)

H̄2(z) =
z2

1152
[
6 2F3

(
1,1;2,3,3;−z2/4

)
−8 2F3

(
1,1;2,3,4;−z2/4

)
+4 2F3

(
1,1;2,4,4;−z2/4

)
− 2F3

(
1,1;2,4,5;−z2/4

)]
.

(2.4b)

2.1 Non-transverse kernel

The kernel defined in Eq. (2.3) is transverse, i.e. it satisfies the condition ∂µHµν(x) = 0, or
equivalently |x|H ′

1 (|x|) = |x|H ′
2 (|x|)+ 3H2(|x|). We can modify it by adding a non-transverse

component
∂µ [xνF (|x|)] = δµνF (|x|)+

xµxν

x2 |x|F
′(|x|). (2.5)

Using the fact that ∂µGµν(x) = 0, this modification entails only a surface term
∫

d4x∂µ [GµνxνF ],
that vanishes in infinite volume. We parametrize the non-transverse component with F (|x|) =
(α + γ)H1(|x|)− γH2(|x|), so that the following choices of the α and γ parameters

Hµν(x) =


−δµν [4H1(|x|)−H2(|x|)]/3, α = 0, γ =−1/3,

−δµνH2(|x|)+4 xµ xν

x2 H2(|x|), α = 0, γ = 1,
xµ xν

x2 [H2(|x|)+ |x|H ′
1 (|x|)] , α = 1, γ = 0,

(2.6)

correspond respectively to kernels that have a “monopole” δµν structure, a traceless “quadrupole”
one, and a (xµxν)/x2 structure. Depending on the value of α and γ , the kernel samples differently
the correlator at short or long distances. In calculating Π′(0), one easily shows that, using a kernel
containing no δµν tensor structure, the integrand falls off at long distances with one power of |x|
faster than with the transverse kernel, if one assumes the correlator to be dominated by a single
vector meson. In our case, both the α = 1 and γ = 1 options result in shorter-range kernels, which
in turn leads to smaller statistical errors from the integration tail, but might be affected by larger
short-distance discretization artefacts.
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Figure 1: Plots of the connected (left) and disconnected (right) contributions to ∆had sin2
θW(Q2) at a scale

Q2 = 4GeV2 with respect to the integration cut r, using the CCS method on the N200 ensemble. In the
disconnected case, the chosen value of r is indicated by a vertical line.

2.2 Lattice discretization and O(a) improvement

The lattice discretization of Eq. (2.1) is straightforward and amounts to just employing the
lattice-determined GγZ

µν(x). Here we show only the O(a)-improved local vector current

(VI)µ(x) =Vµ(x)+acV ∂αTµα(x), Vµ(x) = ψ̄(x)γµψ(x), Tµα(x) =−
1
2

ψ̄(x)
[
γµ ,γα

]
ψ(x),

(2.7)
with non-perturbatively determined improvement coefficient cV and renormalization [8, 9], but the
conserved definition has also been studied. Improving the integral in Eq. (2.1) results in∫

d4x
{〈

Vµ(x)Vν(0)
〉

Hµν(x)−acV
[〈

Tµα(x)Vµ(0)
〉
−
〈
Vµ(x)Tµα(0)

〉]
∂µHµν(x)

}
= ∑

i=1,2,3

∫
d4xgi(x)Hi(|x|), (2.8)

where we integrated by part and used translation invariance, and the O(a)-improvement contribution
is encoded in the g3 correlator and the H3 kernel

g3(x) =
axα

x2 cV
[〈

Tµα(x)Vµ(0)
〉
−
〈
Vµ(x)Tµα(0)

〉]
, H3(|x|) = |x|H ′

1 (|x|)+H2(|x|). (2.9)

3. Numerical tests

We tested the method on three Nf = 2+1 ensembles from the Coordinated Lattice Simulations
(CLS) initiative [10] listed in Table 1. On all three ensembles, β = 3.55 and a ' 0.065fm [11].

Table 1: Parameters and number of configurations of the CLS ensemble used.

L/a L [fm] mπ [MeV] mK [MeV] mπ L #cnfg (`, s, c, disc.)

N203 48 3.1 340 440 5.4 1504 752 94 752
N200 48 3.1 280 460 4.4 1712 856 107 856
D200 64 4.1 200 480 4.2 1080 1080 135 270

3
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The light, strange and valence-charm connected contributions have been computed performing
inversions on 5 (10-15 for the light) point sources randomly placed in space per configuration.
The light and strange disconnected contributions have been computed estimating the trace of the
quark propagator Lµ(y) = Tr

{
D−1(y,y)γµ

}
using 2 random sources of 512 hierarchical probing

vectors [12]. Disconnected all-to-all two-point functions are computed efficiently implementing the
correlation of the two stochastically-estimated traces using the fast Fourier transform (FFT)

Dµν(x) =
∫

d4y
〈
Lµ(y)Lν(y+ x)

〉
=
∫

d4xe−ip·x 〈L̂µ(−p)L̂ν(p)
〉
, L̂µ(p) =

∫
d4yeip·yLµ(y),

(3.1)
with suitable modifications to handle the open boundary conditions in the time direction correctly.

3.1 Integration strategy

In order to implement the four-dimensional integral in Eq. (2.1) on the lattice, we define
contributions summed over lattice points in a four-dimensional sphere of radius r

∆had sin2
θW(Q2,r) =− e2

sin2
θW

∫
Sr,L

d4xs(r,L)gi(x)Hi(|x|), Sr,L = {x : |x|< r, xi < L/2−δ}.

(3.2)
Having to deal with lattices of finite size L in space directions, we modify the sum including only
points that satisfy xi < L/2−δ for i = 1,2,3, with δ = 4a, and correcting for the missing points
with an exactly calculable geometric factor s(r,L).

The different contributions are plotted in Figure 1 against the value of r. The left plot shows
that the light, strange and valence-charm contribution are precisely determined, with statistical
errors that are smaller than the line thickness. At large |x|, the exponential suppression of both the
signal and the statistical error of gi(x) dominates over the polynomial growth of the kernel, and the
connected contributions can be extracted for r→ ∞.

3.2 Long-distance systematics of the disconnected contribution

In contrast with the connected-contribution case, the statistical error of the disconnected
integrand grows at large |x|. As a consequence, the integral in the right plot in Figure 1 looses
its signal at distances & 50a. To estimate the disconnected contribution, we cut the integration of
the noisy correlator tail. In order to constrain the induced systematic effect, we observe that the
long-distance behaviour of GγZ(x) is dominated by the isospin-triplet component

GγZ(x) x→∞∼
(

1
2
− sin2

θW

)
GI=1(x), GI=1(x) =

1
2

C`,`(x). (3.3)

This component is easily estimated since it does not include disconnected contributions. In turns, the
ratio between the disconnected contribution GγZ

disc(x) and GI=1(x) tends asymptotically to a constant

GγZ
disc(x)

GI=1(x)
=

GγZ(x)−
(1

2 − sin2
θW
)

GI=1(x)
GI=1(x)

+
1
9

sin2
θW

−
(

1
6
− 2

9
sin2

θW

)
Cs,s(x)
C`,`(x)

−
(

1
3
− 8

9
sin2

θW

)
Cc,c(x)
C`,`(x)

x→∞∼ 1
9

sin2
θW. (3.4)

4
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Figure 2: Preliminary light connected (left) and disconnected (right) contributions on all ensembles and with
different methods. The left vertical line indicates the physical pion and kaon masses point, the right one
indicates the SU(3) flavour symmetric point.

Thus, we compare the statistical error of ∆disc
had sin2

θW(Q2,r) with the value of ∆I=1
had sin2

θW(Q2,r→
∞)−∆I=1

had sin2
θW(Q2,r). The latter represents an upper bound on the neglected contribution, and r

is chosen such that this upper bound is less than half of the statistical error of ∆disc
had sin2

θW(Q2,r).

4. Conclusions

Preliminary results in Table 2 and Figure 2 indicate that we are able to estimate the disconnected
contribution with a statistical error that is only 0.1-0.2 % of ∆had sin2

θW(Q2) at Q2 = 4GeV2, and
the systematic errors from the truncation of the spacetime summation under control. The statistical
error is dominated by the light connected contribution, that has been computed with a low statistics
and can easily be improved. A direct comparison between the TMR and CCS methods has been
performed: In the connected-contribution case, the two methods result in the same statistical
precision, and the difference in the central values can be attributed to different discretization effects.
In the disconnected-contribution case, the statistical precision of the CCS method shows a different
volume dependence than the TMR method one. In particular, disconnected contributions estimated
with the CCS method are comparatively slightly less precise on the two (3.1fm)3 boxes, but they are
more precise on the larger-volume ensemble, in particular when a non-transverse kernel is employed.
This suggests to further investigate CCS methods on lattices with a large physical volume, applying

Table 2: Preliminary value of ∆had sin2
θW(Q2) at Q2 = 4GeV2 and its connected (light, strange and charm)

and disconnected contributions, on three different ensembles using the TMR and the CCS methods.

×10−6 N203 (TMR, CCS) N200 (TMR, CCS) D200 (TMR, CCS)

light −4466(19) −4376(20) −4601(23) −4528(28) −4773(33) −4663(32)
strange −1961(7) −1901(6) −1888(6) −1828(5) −1757(4) −1689(3)
charm −443(2) −364(1) −451(2) −373(1) −455(1) −377(1)

disc 10(4) 13(8) 25(6) 28(10) 20(13) 8(10)

total −6859(22) −6628(24) −6916(26) −6700(30) −6965(35) −6721(34)

5
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them also to the computation of the leading HVP contribution to (g−2)µ and to the running of the
QED coupling α . Varying the energy scale up to Q2 = 10GeV2 does not affect these conclusions.

The results presented in Table 2 are preliminary and a full assessment of systematic errors
is lacking. The main systematics to be assessed are finite-volume effects and scale-setting errors.
Moreover, ensembles with different lattice spacings are needed to confirm that different methods
result in compatible values in the continuum limit. Nevertheless, these results shows that it is
possible to achieve a sub-percent determination of ∆had sin2

θW(Q2), including the disconnected
contribution with full control of the integration tail systematics. In general, lattice methods compare
very favourably to the phenomenological determination [3], which is affected by the systematics
from flavour separation.
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