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We present a nucleon structure analysis including local isovector charges as well as twist-2 opera-
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Finally, the chiral, continuum and finite size extrapolation is performed to extract physical results.
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1. Introduction

We present a preliminary analysis of nucleon structure observables at zero momentum transfer
performed by the Mainz group. For a previous account of this work see Ref. [1]. In this study we
consider nucleon forward matrix elements

MO =
〈
N(p′,s′) |O|N(p,s)

〉
, (1.1)

where N(p,s), N(p′,s′) denote the initial and final nucleon state and O is an (isovector) operator
insertion. We use local operator insertions

OA
µ = q̄γµγ5q, OS = q̄q, OT

µν = q̄iσµνq , (1.2)

giving rise to the isovector axial-, scalar- and tensor charges denoted by gu−d
A , gu−d

S , and gu−d
T ,

respectively, as well as twist-2, dimension-four operator insertions

OvD
µν = q̄γ{µ

↔
D ν} q , OaD

µν = q̄γ{µ γ5
↔
D ν} q , OtD

µνρ = q̄σ[µ{ν ]

↔
D ρ} q . (1.3)

The later correspond to the nucleon isovector average quark momentum fraction 〈x〉u−d , the helicity
moment 〈x〉∆u−∆d and the transversity moment 〈x〉δu−δd , respectively. To compute physical observ-
ables within lattice QCD, we consider a ratio of spin-projected three- and two-point functions. For
the relevant case of zero-momentum transfer~q = ~p′−~p = 0 it reads

RO
µ1,...,µn

(t f , t, ti)≡
CO,3pt

µ1,...µn(~q = 0, t f , ti, t;Γz)

C2pt(~q = 0, t f − ti;Γ0)
, (1.4)

where ti, t and t f denote initial state, insertion and final state times and the spin projectors Γ0 =
1
2(1+ γ0) and Γz = Γ0(1+ iγ5γ3) have been introduced. Considering large Euclidean time sepa-
rations t f − t � 1, t − ti � 1 this ratio asymptotically reaches a plateau, which allows to extract
the corresponding observable. However, in practice the signal-to-noise problem prevents one from
choosing tsep = t f −ti� 1.5fm, hence a different method is required which will be discussed below.

2. Lattice setup

Numerical calculations are performed on eleven gauge ensembles provided by the Coordi-
nated Lattice Simulations (CLS) initiative. These ensembles have been generated with N f = 2+1
dynamical flavors of non-perturbatively improved Wilson quarks [2] and the tree-level Symanzik
gauge action. Exceptional configurations are suppressed by a twisted mass regulator [3] and open
boundary conditions in time are used to prevent issues with long autocorrelations in the topological
charge [4]. An overview of the gauge ensembles can be found in Tab. 1. In order to set the scale
in our simulations we use the gluonic observable t0/a first introduced in Ref. [5] with a physical

value of
√

8tphys
0 = 0.415(4)stat(2)sys fm [6]. The ensembles comprise various choices of the light

quark mass corresponding to pion masses between∼ 200MeV and∼ 350MeV. For a reliable con-
tinuum extrapolation we have included simulations at four values of the lattice spacing a between
0.0498fm and 0.0863fm; see Ref. [6]. The ensembles used in this study typically satisfy MπL & 4,
c.f. Tab. 1. A single ensemble (S201) with MπL≈ 3 has been added for a dedicated check of finite
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ID β T/a L/a aMπ Mπ/GeV MπL NHP NLP tsep/ fm

C101 3.40 96 48 0.0976(09) 0.223(3) 4.68 1908 15264 1.0, 1.2, 1.4
H102 3.40 96 32 0.1541(06) 0.352(4) 4.93 7988 0 1.0, 1.2, 1.4
H105 3.40 96 32 0.1219(10) 0.278(4) 3.90 4076 48912 1.0, 1.2, 1.4
N401 3.46 128 48 0.1118(06) 0.289(4) 5.37 701 11216 1.1, 1.2, 1.4, 1.5, 1.7
S400 3.46 128 32 0.1352(06) 0.350(4) 4.33 1725 27600 1.1, 1.2, 1.4, 1.5, 1.7
D200 3.55 128 64 0.0661(03) 0.203(3) 4.23 1021 32672 1.0, 1.2, 1.3, 1.4
N200 3.55 128 48 0.0920(03) 0.283(3) 4.42 1697 20364 1.0, 1.2, 1.3, 1.4
N203 3.55 128 48 0.1130(02) 0.347(4) 5.42 1540 24640 1.0, 1.2, 1.3, 1.4, 1.5
S201 3.55 128 32 0.0954(05) 0.293(4) 3.05 2092 66944 1.0, 1.2, 1.3, 1.4
J303 3.70 192 64 0.0662(03) 0.262(3) 4.24 531 8496 1.0, 1.1, 1.2, 1.3
N302 3.70 128 48 0.0891(03) 0.353(4) 4.28 1177 18832 1.0, 1.1, 1.2, 1.3, 1.4

Table 1: List of CLS gauge ensembles used in this study with their respective values of β , the lattice spacing
a, T/a and L/a. The measured pion masses are given in units of the lattice spacing and in physical units.
Additionally, we have included Mπ L, the number of high and low precision measurements NHP, NLP and the
source-sink separations tsep in physical units.

size effects. We remark that for two ensembles (C101, H102) we have only computed results for
local operator insertions while for all other ensembles the full set of data is available.

The required renormalization of the bare matrix elements in Eq. 1.1 has been performed non-
perturbatively for the three coarser values of the lattice spacing using the Rome-Southampton
method [7]. However, simulations with periodic boundary conditions as required by this method
are not feasible at the finest lattice spacing due to the issue of topological freezing. Therefore, we
use extrapolated values in this case.

For the computation of two- and three-point functions as required for the ratio in Eq. (1.4) we
employ the truncated solver method [8, 9] on most of the ensembles. The corresponding numbers
of high- and low-precision measurements NHP and NLP on each ensemble, as well as the available
values of the source-sink separations tsep for the three-point functions are also included in Tab. 1.
Sequential inversions through the sink allow us to obtain the three-point function for all values of
the insertion time t for any given tsep. The nucleon final state is always produced at rest, i.e. ~p′ = 0.
Since we restrict ourselves to isovector operator insertions, contributions from quark-disconnected
diagrams cancel exactly.

Errors on observables are computed using the blocked jackknife method on each ensemble.
The final errors from the chiral, continuum and finite size (CCF) fits are obtained via bootstrapping
with N = 10000 samples, after resampling the results on the individual ensembles before perform-
ing the fits. All errors on individual quantities (e.g. renormalization factors, t0/a2) are consistently
propagated to the final results, hence we will quote only a single error reflecting both statistical and
various systematic uncertainties.
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Figure 1: Convergence of the fitted gap ∆0 as a function of Mπ tstart. Left panel: Results on D200 without
including the term BO

n e−∆nt f in Eq. (3.1). Right panel: Results on N203 from the full fit model.

3. Excited states and simultaneous fits

As mentioned before, lattice calculations of nucleon structure observables are strongly affected
by excited state contamination, thus requiring a dedicated analysis to obtain physical results with
reasonably controlled systematics. To this end we use a novel approach that allows us to apply a
simultaneous fit directly to data for the ratio in Eq. (1.4) including all available observables and
all source-sink separations. Its validity relies on the fact that unlike amplitudes which differ for
different operator insertions, the energy gaps are always the same. For the present case of zero-
momentum transfer the fit ansatz reads

RO(t f , t,~q = 0) = gO+∑
n

AO
n

(
e−∆nt + e−∆n(t f−t)

)
+BO

n e−∆nt f . (3.1)

where gO is the actual charge (or moment), ∆n is an energy gap and AO
n , BO

n denote operator-
dependent amplitudes. In our actual analysis we include a single state (i.e. one free gap ∆0) and
perform a fit to symmetrized data in a range

[
tstart, tsep/2

]
for each value of tsep and all available

observables. The value of tstart is chosen s.t. Mπtstart ≈ 0.4 holds on each ensemble. In general, a
precise result for the gap ∆0 at larger values of tstart requires very large statistics. Nevertheless, one
can track the convergence of ∆0 as a function of Mπtstart on most of our ensembles. An example
leaving out the last, suppressed term in the fit model is shown in the left panel of Fig. 1. At
sufficiently large statistics, this can be achieved even for the full model; see right panel of Fig. 1.
Typically, these fits describe the data rather well across all observables and values of tsep, as can be
seen in Fig. 2. However, we might still have to adjust fit ranges in the future to better accommodate
vastly different (effective) statistics on different ensembles, i.e. relax the strict criterion Mπtstart ≈
0.4. As can be inferred from comparing the actual fit results to the lattice data at the largest value
of tsep, there can still be significant effects of excited states even at source-sink separations as large
as tsep = 1.5fm and even at fairly heavy pion masses (Mπ ≈ 347MeV).

4. Chiral, continuum and finite size extrapolations

In order to obtain physical results from the lattice data one still has to perform a chiral, con-
tinuum and finite size extrapolation. Therefore, we fit our data for each observable O with the

3
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Figure 2: Results for all six observables on ensemble N203 from the simultaneous fit model in Eq. (3.1).
Lattice data and corresponding fit band (red) are only shown for the largest value of tsep ≈ 1.5fm.

following fit model

O(Mπ ,a,L) = AO +BOM2
π +COM2

π logMπ +DOan(O)+EO
M2

π√
MπL

e−Mπ L , (4.1)

where n(O) controls the leading lattice artifact, i.e. n(O) = 2 for gu−d
A , gu−d

S and n(O) = 1 other-
wise. Individual fit models will be denoted by the corresponding combination of active fit param-
eters, e.g. ’ABDE’. In case of the axial charge the coefficient CO is known analytically, but we do
not find our data to be sensitive to the chiral log in any case. This is why we do not include the term
∼CO in the final fits. Similarly, our present data does not constrain further higher-order terms. In
Fig. 3 we show the chiral and continuum behavior of gu−d

A for two choices of the fit model (ABD
and ABDE). Note that in these plots the lattice data have been corrected for the remaining extrapo-
lations using the parameters from the fits, leading to highly correlated point errors. We find that the
inclusion of the finite size term generally improves the fit. In fact, for the axial charge finite size
effects turn out to be quite significant, as can be seen from the finite size behavior for gu−d

A in the
first panel of Fig. 4. While mostly irrelevant for the final result, the additional S201 ensemble with
MπL ≈ 3 clearly demonstrates the importance of the finite size correction. Therefore, we choose
ABDE as our final fit model. The remaining panels of Fig. 4 show the chiral behavior for gu−d

S ,

4
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Figure 3: Chiral behavior (upper row) and continuum behavior (lower row) for gu−d
A . Left column: Results

from fit model ABD, i.e. no finite size term. Right column: Results from model ABDE.

gu−d
T and 〈x〉u−d (again after correcting the lattice data for all other effects).

5. Results

In general, we find that the data is described very well by the CCF fit model. Moreover, we
have tested that applying a pion mass cut of Mπ < 290MeV to our data does not significantly affect
the results. The only exception is the tensor charge gu−d

T for which we obtain χ2
corr/dof = 2.53 for

fitting the full data set, but χ2
corr/dof = 1.50 after applying the cut. Moreover, the resulting physical

value changes by more than 1σ . Therefore, we quote the more conservative value excluding data
with Mπ > 290MeV in this case. Our preliminary results for the isovector nucleon charges at the
physical point read

gu−d
A = 1.251(24) , gu−d

S = 1.22(11) , gu−d
T = 0.979(60) , (5.1)

while for the lowest moments of the twist-2, dimension-four operators we find

〈x〉u−d = 0.162(27) , 〈x〉∆u−∆d = 0.186(29) , 〈x〉δu−δd = 0.169(38) . (5.2)
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