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1. Motivation

Lattice QCD calculations are currently the preferred first-principle tool for hadron physics.
Euclidean two-point correlation functions give us access to the hadron spectrum and three-point
correlation functions to matrix elements and the associated hadronic form factors. In principle, the
lattice regularization offers full control over all systematics errors, although in practice this is often
hard to achieve as the numerical effort may grow tremendously.

Lattice calculations are not the only way to address strong-interaction physics. Numerical
calculations based on functional methods such as Dyson-Schwinger and Bethe-Salpeter equations
(DSEs and BSEs) form another approach, which can be useful in constraining quantities also be-
yond the space-like domain, see e.g. [1]. However, since this approach builds upon an infinite
tower of relations between quark and gluon n-point functions which has to be truncated for numer-
ical treatments, it comes with a systematic error that is difficult to quantify without additional input
such as from lattice QCD.

To reliably estimate truncation errors, lattice QCD input should
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Figure 1: Quark-bilinear current
coupled to external particle (e.g.,
photon) with momentum Q.

not be restricted to hadronic quantities but also include quark and
gluon n-point functions. Lattice studies in the past focused on
quark and gluon propagators or the triple-gluon and quark-gluon
vertex functions of QCD. To access hadronic form factors within
functional methods, the offshell tensor structure of quark-bilinear
operators is required as well. For instance, the non-perturbative
dressing of the quark-photon vertex associated with the vector
current is an essential ingredient for electromagnetic or transition
form factor calculations. The corresponding quark-bilinear (cur-
rent) 3-point functions are typically calculated on the lattice when
targeting RI’(S)MOM renormalization constants. There, however, not the complete tensor structure
of the underlying vertex is determined but rather the divergent terms at a fixed scale.

We calculate, for the first time, the QCD dressing for all form factors of the vector and axial-
vector quark-antiquark vertices for one off-shell kinematic configuration on the lattice. In the
continuum, these vertices have the general decomposition

Γ
µ

V (k,Q) = gV
1 γ

µ +gV
2 kµ/k+gV

3 ikµ +gV
4

iω
2
[γµ ,/k]

+ f V
1 T µ

1 + f V
2 ωT µ

2 + f V
3 T µ

3 + f V
4 T µ

4 + f V
5 T µ

5 + f V
6 T µ

6 + f V
7 ωT µ

7 + f V
8 T µ

8 , (1.1)
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where the tensors T µ

1...8 are given by
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and we used tµν

AB = A ·Bδ µν−BµAν and 1
6 [γ

µ ,γν ,γρ ] =−γ5 εµνρσ γσ . Here, Q is the incoming mo-
mentum (e.g., of the virtual photon for the case of ΓV ) and k is the relative quark momentum. The
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no. β κ V a [fm] ZRGI
ψ ZRGI

V ZRGI
A mπ [MeV] #cnfg.

C-1 5.20 0.13550 323×64 0.081 0.749 0.722 0.753 681 8
C-3 0.13584 323×64 409 8

E-3 5.29 0.13620 323×64 0.071 0.759 0.737 0.765 422 10
E-4 0.13632 643×64 290 30
E-5 0.13640 643×64 150 238

F-3 5.40 0.13647 323×64 0.060 0.771 0.751 0.778 426 10

Table 1: Lattice parameters for our gauge ensembles as given by the RQCD collaboration [3]. The RGI
renormalization constants ZRGI are updates of the values in [4]; they correspond to r0 = 0.5fm and r0ΛMS =

0.789. The values for cSW are 2.0171, 1.9192 and 1.8228 for β = 5.20, 5.29 and 5.40, respectively [3]. For
the 644 lattices the statistics varies with momentum and #cnfg. refers here to the number of analyzed gauge
configurations for the lowest five momenta (see text). For higher momenta smaller amounts are sufficient.

outgoing and incoming quark and anti-quark have momenta k± = k±Q/2, respectively (see Fig.1)
and we denoted ω = k ·Q. The above decompositions with gauge parts constructed from the form
factors gi(k2,ω,Q2) and transverse parts from fi(k2,ω,Q2) follow from implementing the vector
and axialvector Ward-Takahashi identities (WTIs) without introducing kinematic singularities. As
a result, the gi and fi are even in the variable ω and non-singular in the kinematic limits kµ → 0
and Qµ → 0. In the vector case, the first line in Eq. (1.1) is the Ball-Chiu vertex [2].

2. Lattice setup

For our lattice calculation we use the N f = 2 gauge ensembles of the RQCD collaborations
(Wilson action, clover-improved fermions). We gauge fix a subset (see Table 1) to Landau gauge
and calculate the quark propagator S and the connected part of the quark-bilinear 3-point functions:

S(k±) =
1
V ∑

x,y
eik±(x−y) 〈[D−1

W (U ;x,y)
]〉

U , (2.1)

GΛ(k,Q) =
1

V 3/2 ∑
x,y,z

eik+(x−z)+ik−(z−y) 〈D−1
W (U ;x,z)ΛD−1

W (U ;z,y)
〉

U . (2.2)

Λ is any of the Dirac matrices Λ = γµ ,γ5γµ and DW denotes the Wilson-clover fermion matrix.
To have an optimal signal-to-noise ratio we use the plane-wave-source method for the inversion of
DW . The vertex is obtained form the amputated 3-point function,

ΓΛ(k,Q) = S−1(k+)GΛ(k,Q)S−1(k−) , (2.3)

and its form factors from projecting ΓΛ onto its tensor structure. For example, for the vector vertex
this yields

{gi, fi}= ∑
i

[
P−1]

i j s j with the traces s j = Tr
{

Γ
µ

V (k,Q)Pµ

j (k,Q)
}

(2.4)

and the matrix elements [P(k,Q)]i j = Tr
{

Pµ

i (k,Q)Pµ

j (k,Q)
}

. Here Pµ

i (k,Q) refers to one of the
base tensors of Γ

µ

V in Eq. (1.1).
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For the quark propagator momenta k± we choose an asymmetric setup (Q2 = k2
+ 6= k2

−) and in
addition we use twisted boundary conditions for the fermions. This adds a shift to the momenta
proportional to the twist angle (see, e.g., [5]):

akµ

± =
2π

Nµ

(
nµ

±+
τ

µ

±
2

)
, (2.5)

which we exploit to enhance the momentum resolution. For our choice of momenta the integer
components, nµ

±, and twist angles, τ
µ

±, for the respective k− and k+ read

n+ = n(2,1,0,0), n− = n(0,1,1,0) with n = 1,2, . . . ,Ns/4 . (2.6)

τ+ = τ (2,1,0,0), τ− = τ (0,1,1,0) with τ = 0,0.4,0.8,1.2 and 1.6. (2.7)

This corresponds to

Q2 = k2
+ =

5
2

k2
− , k2 =

9
20

Q2 and ζ
2 ≡ ω2

k2Q2 =
1
5
. (2.8)

Our quark bilinears and propagator are not offshell O(a)-improved; only the action is correct
to O(a). We thus expect that the form factors will deviate from their behavior in the continuum for
higher k2

±, and at small momentum where the deviations increase with the bare quark mass [O(am)

effects]. Statistical errors are estimated with a Bootstrap analysis. We find they are drastically
enhanced at small momentum for the smallest (almost physical) quark mass; occasional outliers
appear in the Monte-Carlo history for ensemble E-5. For the 644 lattices the number of configura-
tions is therefore enlarged for the lowest five k2

±. The numbers quoted for E-4 and E-5 in Table 1
(#cnfg.) refer to the lowest five momenta.1 For higher momenta a lower number is sufficient: 14
configurations for ensemble E-4 and 64 for ensemble E-5, with the exception for the second lowest
momentum 5-tuple of ensemble E-5 where 160 gauge field configurations are analyzed.

3. Lattice results for the form factors

We calculate all vertex form factors on the ensembles listed in Table 1. Selected lattice results
are presented in Figs. 2 and 3 and additional ones can be found in [6] and in the forthcoming
publications. The results shown here are renormalized with the RGI renormalization constants of
the RQCD collaboration given in Table 1, i.e., ΓR

Λ
= ZΛZ−1

ψ ΓΛ (see, e.g., [4] for details).2

To compare with solutions of the rainbow-ladder truncated inhomogeneous BSEs, we plot
the form factors gi versus k2 +Q2/4 and fi versus S0 ≡ Q2/4+ k2/3. These capture the main
momentum dependencies, i.e., the form factors gi(k2,ω,Q2) from the BSE solutions mainly scale
with k2 + Q2/4 and the fi(k2,ω,Q2) with S0. For the lattice momentum setup these variables
reduce to k2 +Q2/4 = 7Q2/10 and S0 = 2Q2/5, respectively. The BSE bands in Figs. 2 and 3
correspond to zeroth Chebyshev moments in the variable ζ =−1 . . .1 and contain the full spacelike
kinematic dependencies for k2 > 0 and Q2 > 0. In addition, they absorb the rainbow-ladder model
dependence by varying the parameter η from 1.6 . . .2.0, cf. [1] for details. The remaining scale

1Due to the twisted boundary condition 5-tuples of adjacent momenta belong to the same n± but differ by τ±.
2Note that small corrections to these chirally-extrapolated constants would yield a better overlap for the gV,A

1 data.
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Figure 2: Renormalized gauge form factors of the vector (left) and axial-vector vertex (right).

parameter and current-quark mass were chosen to reproduce the pion decay constant at the physical
pion mass mπ = 138 MeV. The continuum solutions were obtained in a MOM scheme, where due
to multiplicative renormalizability the renormalization constants Zψ = ZV = ZA are identical. To
match with the lattice results, we have renormalized all form factors such that g1 for the vector
vertex agrees with the lattice data at k2 +Q2/4 = 3 GeV2 for the central value of η .

In general the continuum solutions and lattice data show a similar momentum dependence.
There are, however, clear deviations at low momenta, where the lattice results show a milder mo-
mentum dependence and zooming in further reveals O(am) effects at low momentum.

The form factors encode the information about how an external current couples to a non-
perturbative quark. For example, the vector and axial-vector WTIs entail that gV

1 = gA
1 in the chiral

limit, where both are completely determined by the quark propagator. This trend can be seen in
Fig. 2 (the deviations at large momenta are likely lattice artifacts [6]). The axial WTI entails that
gA

3 encodes the pion pole in the timelike region, i.e., gA
3 ∼ 1/(Q2 +m2

π), which explains the strong
rise in the infrared. The form factors fi in Fig. 3 contain further timelike poles because a photon,
W or Z boson can fluctuate into particles with matching quantum numbers. In the timelike region
f V
1 must have vector-meson poles with quantum numbers JPC = 1−−, whereas f A

1 encodes again
the pion pole but also axial-vector meson poles. If Γ

µ

V (k,Q) is taken onshell and contracted with
Dirac spinors, one obtains the onshell matrix element with Dirac and Pauli form factors F1(Q2) and
F2(Q2), where both f V

3 and f V
4 contribute to the anomalous magnetic moment F2(0). In Fig. 3 one

can see that the overall smallness of the quark anomalous magnetic moment f V
3 does not appear to

be a deficiency of the rainbow-ladder truncation but rather a genuine feature in QCD.
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Figure 3: Renormalized transverse form factors of the vector (left) and axial vector vertex (right).
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4. Summary

We have performed the first lattice calculation of the nonperturbative tensor structure of the
vector and axial-vector vertices. Our calculation is for N f = 2 mass-degenerate Wilson fermions
and expands over three lattice spacings and several bare quark masses; disconnected contributions
are not yet included though. When comparing lattice results to the available continuum solutions
(rainbow-ladder truncation), we find that the form factors have a similar momentum dependence
but there are clear deviations towards low momenta. Lattice spacing artifacts are surprisingly small
but seen when zooming in. For instance, a check of the vector WTI with data for an offshell O(a)-
improved quark propagator reveals that for Q2 > 4GeV2 lattice spacing artifacts become important
(see [6]). Future lattice studies should use offshell O(a)-improved Wilson fermions (see [7, 8, 9])
and use point-split currents [10, 11]. This will help to improve our lattice results in the transition
regime to perturbation theory and reduce O(am) effects at small momentum.
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propagators were performed on the HLRN supercomputing facilities (Berlin/Hannover), the Ara cluster of the FSU Jena
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puter SuperMUC. This work was supported by the BMBF under grant No. 05P15SJFAA (FAIR-APPA-SPARC), the

DFG Research Training Group GRK1523, and the FCT Investigator Grant IF/00898/2015.
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