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1. Introduction and Motivation

Now, more so than ever, precision calculations are indispensable for the ongoing experimental
program at CERN’s Large Hadron Collider (LHC). This is for several reasons, the experimental
analyses are maturing, the detectors are now fully calibrated, and data is pouring in. As a result
several analyses have already been presented (for a small selection see e.g. [1, 2, 3,4, 5,6, 7, 8,
9]) for which the experimental uncertainties are a) smaller or comparable to the Next-to-Leading
Order (NLO) accuracy and b) clearly demonstrate the inability of NLO predictions to correctly
describe the data. The current round of analyses will quickly exploit the advantages of the larger
center of mass energy of Run II. If no new resonances are directly produced, (which are clearly
visible over the backgrounds), the field will enter a new regime of precision studies. In lieu of any
discoveries the primary objectives of Run II and the future High luminosity upgrade (HL-LHC)
will be twofold, firstly the properties of the Higgs boson must be established and rigorously tested
against the predictions of the Standard Model (SM). Secondly, subtle Beyond the Standard Model
(BSM) physics must be searched for and constrained (or discovered). For both of these objectives
precision knowledge of the SM (and putative signals) is crucial.

Fortunately, the current lack of existing evidence for BSM physics need not necessarily hold
indefinitely over the lifetime of the LHC. It may simply mean that we have to work harder to
uncover its subtleties. The discovery of the Higgs boson [10, 11] allows us, for the first time,
to study the properties of a fundamental scalar. One of the most fascinating features of such a
boson is that it allows for a dimension-two renormalizable term in the Lagrangian |H|?, which is
unique to a scalar field. This term allows for the possibility of portal type interactions with other,
as yet undiscovered, fundamental scalars. Once expanded these terms modify self-interactions of
the Higgs boson, and hence the shape of the electro-weak symmetry breaking potential. As it
currently stands we have no information (beyond the quadratic term) on the shape of this potential,
which could have enormous consequences for BSM physics and cosmology. Of course the SM
predicts the shape of this potential through the Higgs quartic coupling A, which is fully determined
as a function of the Higgs mass and vacuum expectation value. The measurement of this coupling
(through di-Higgs production) is a long term goal of the HL-LHC and future colliders [12]. Studies
of the Higgs boson will also shed insight into the validity of the SM itself. For instance, we are not
currently certainly whether the Higgs is 100% SM like, or masquerading as a SM Higgs-like boson
in the alignment limit of a BSM scenario. In any case, given the widespread nature of extended
Higgs sectors in BSM theories, it is extremely important to pin down the nature of the Higgs boson
by measuring its interactions with the other SM particles as precisely as possible.

A fantastic recent result is the calculation of the Higgs inclusive cross section to Next-to-
Next-to-Next-to Leading Order accuracy (N3LO) [13, 14]. This breakthrough calculation has had
immediate significant impact in our ability to understand the Higgs boson. Previously the theoret-
ical uncertainty arising from variation of the renormalization and factorization scales was around
10% (note that this is already around the experimental uncertainty with only Run I data). With the
completion of the inclusive cross section, this now drops to around 2%. Additionally, convergence
of independent PDF sets have also significantly reduced the uncertainties estimated from varying
the PDF choices [15, 16, 17], resulting in much upgraded inclusive prediction for Run II and be-
yond. One of the key advantages of the Run II (and HL-LHC) program is the ability to study the
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Higgs differentially. Going beyond the inclusive cross section allows us to probe more subtle ef-
fects which may by obscured inclusively, and will allow for a more efficient means of separating
different Higgs production mechanisms. It is therefore crucial that continued progress is made on
the theoretical predictions which allow for fully differential properties of the Higgs boson.

It is clear from the emerging experimental analyses that (at least) NNLO predictions are re-
quired in order to compare SM predictions to data. Failure to do so can result in a misinterpretation
of the data. For instance, the measurement of the WW cross section [5, 9] failed to match the NLO
prediction, and deviations of around 2 standard deviations were reported. This lead to speculation
that the difference may have been caused by light stops [18, 19]. However, once the NNLO calcu-
lation was completed, the discrepancy disappeared [20]. The assumption that the NLO prediction
is equivalent to that of the “SM", while widespread, is incorrect. What is crucial is that theoretical
and experimental uncertainties are similar sizes (and ideally small). However, we have no system-
atic way of estimating theoretical uncertainty. Scale variation is typically used, however, again as
more NNLO results are becoming known, we are typically finding that the procedures use at NLO
are inadequate to estimate the impact of unknown higher order corrections. Therefore it is now
clear that for Run II NNLO predictions for cross section measurements and differential studies are
essential.

Over the last decade or so, the bottleneck for NNLO computations was the inherent difficul-
ties in regulating the InfraRed (IR) singularities which are copious in different phase spaces, and
cancel only after the combination of the various parts of the calculation. Thankfully our ability
to perform these complex NNLO calculations has significantly improved over the last few years.
This is primarily due to the maturation of existing technologies [21, 22, 23], and the advent of new
techniques [24, 25, 26]. One of the most interesting techniques to emerge over the last couple of
years is N-jettiness slicing [24, 25]. Slicing techniques [27, 28] deal with the IR singularities by
separating the phase space volume in to two separate regions. In one region the calculation is free
of some (or all) of the IR singularities and is therefore amenable to integration. In the second re-
gion an approximation is typically used to calculate the cross section. The approximation is usually
controlled by the size of the slicing variable. Unphysical power corrections are typically present,
which must be suppressed. For this reason the values of the slicing parameter must be taken as
small as possible. In N-jettiness slicing the global event shape variable N-jettiness [29] is used

to separate the two regions. If, for an N jet final state, the N-jettiness Ty is greater than a cutoff
cut

N
bles an NLO calculation and can therefore be calculated with NLO tools, such as Catani-Seymour
Dipole subtraction [30]. For the region Ty < 7", a factorization theorem [31, 32] derived from
Soft Collinear Effective Field Theory (SCET) [33, 34, 35, 36, 37] can be used to approximate the

calculation. Once 74" is taken small enough the power corrections become negligible and the cal-

then the calculation can have at most one single un-resolved parton. In this regard it resem-

culation obtains NNLO accuracy. The N-jettiness slicing approach has been used in several recent
calculations [38, 24, 39, 40, 41], and has been implemented into MCFM [42]. These results, in
addition to developments by other groups, have resulted in a veritable explosion of recent NNLO
results [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56].

In summary, assuming that no new resonant particle is found over the next year, the next stage
of the LHC becomes a precision era. The search for BSM physics will not end, but will become
increasingly difficult. Precision calculations are needed to determine the shape of SM backgrounds
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for subtle shape analyses, such as those arising from Effective Field Theory (EFTs) extensions
of the SM, anomalous couplings, and broad resonances which may decay semi-invisibly. Preci-
sion calculations are also mandatory in the study of the Higgs boson, for a variety of production
channels, such that theoretical uncertainty need not limit our understanding of the Higgs and its
interactions with the SM particle spectrum.

The aim of these lectures is therefore to introduce the reader to some of the tools which are
helpful in constructing precision predictions for LHC physics. Section 2 provides an overview of
modern tools for optimized calculation of tree-level amplitudes, focusing on on-shell techniques
for color ordered amplitudes. Section 3 then extends the discussion to NLO computations, intro-
ducing the reader to unitarity based methods. Section 4 discusses the difficulties associated with IR
regularization at both NLO and NNLO, and finally the tools are applied to an example calculation
in Section 5.

Finally, I would at this stage like to acknowledge the great historical sets of lectures available
on perturbation theory, from which I have borrowed heavily in constructing these notes. I will try
to ensure adequate referencing is included throughout the text, but globally I am grateful to Keith
Ellis for his lecture notes from various schools (which have been released as a review article on
unitarity [57]). John Campbell for his TASI lecture notes from 2011 [58] and the Black Book of
QCD [59], and Lance Dixon’s notes from this school in 2014 and 1994 [60, 61, 62]. Without these
fantastic resources preparing these lectures would have been a daunting challenge. The wise reader
would set these lecture notes down, and go back to these more complete and well written works.

2. The lowest of orders, techniques for computing tree-level diagrams

We begin by discussing the very first term needed in a perturbative expansion, the Leading
Order (or LO). For the vast majority of processes this corresponds to the calculation of tree-level
diagrams, which contain no closed loops. However, there is a subtly in that some processes, (of
which the most famous is probably gg — H) are possible only via a loop. This is why tree-level
and LO are not the same thing, LO always refers to the first non-zero term in the perturbative
expansion. Tree-level always means no loops. Anyway for now we’ll assume that LO and tree-
level are interchangeable and discuss techniques for calculating tree-level processes.

Many of you have probably already come across some of the great work horses in particle
physics, the event generators. A key component of these complex codes such as Madgraph [63, 64],
Sherpa [65], Alpegn [66], Pythia [67, 68], and Herwig [69, 70], is the ability to calculate matrix
elements for an almost arbitrary number of scattering particles [71]. While the calculation of,
for instance, gg — gg scattering could be completed over a leisurely afternoon. The factorial
growth of the number Feynman diagrams means that already calculating gg — 4g scattering is
rather unpleasant. By the time we try to calculate something like gg — 7g the number of Feynman
diagrams has grown to 559405. Obviously no-one is going to sit down and simplify this.

Its clear that even writing the matrix element for of multi-particle scattering processes is a hor-
rendous computational challenge. How then is it possible for you to summon Madgraph, implement
your favorite model and generate cross sections? The answer lies in the underlying structure of the
theory which allows us to organize our calculation, and more importantly, recursively calculate
tree-level diagrams.
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Figure 1: Number of Feynman diagrams for gluonic scattering as a function of the number of external
gluons, n.

2.1 Organizing the calculation I : Color

The basic idea we will pursue is one of divide and conquer. Much of the complexity of the
calculation occurs due to the proliferation of color. The more colored scatterers there are, the more
different types of color structures we have to calculate. However, since the underlying Feynman
diagrams are related to one another, it should be possible to generate different color structures from
a single “master" amplitude. These amplitudes go by different names in the literature, we’ll call
them color-ordered amplitudes here, but you may also see them referred to as partial or primi-
tive amplitudes in other texts. For more detail on these topics you could investigate some of the
following review references [60, 61, 72] and the original literature [73, 74, 75, 76, 77].

The key concept of color-decomposition is to systematically remove the structure constants
féb¢ arising form the Lie Algebra of SU(N) in terms of the generator matrices 7¢ in the fundamental
representation. We recall that in the adjoint representation of SU(N) there are N> — 1 color degrees
of freedom, while in the fundamental there are N. Gluons of course, transform in the adjoint
representation and quarks (anti-quarks) in the fundamental (anti-fundamental) representation. We
normalize our matrices as follows

tr(T97T?) = §% (2.1)

This may be different (by a factor of 2) from what you are used to, but will avoid an irritating
proliferation of v/2’s in calculations. What can happen in a QCD calculation? Well we can either
encounter a gluon-quark-anti quark vertex (factor of (T“){ . ) atriple gluon vertex (factor of f%¢),
or a four gluon vertex (factors of f9%¢ f°4¢). We recall that we can relate structure constants to the

generators through the Lie Algebra
(T4, T = iv2fabere (2.2)
We can use this to write a definition of f¢¢

iV2flTdTe = T4 T|T*° (2.3)



Perturbation Theory Ciaran Williams

Taking the trace of both sides

iV2f(TITC) = w(TTPT¢) — te(TPTT°) (2.4)
iV2f%¢ = w(TTPTC) — (TP TT¢) (2.5)
iV2f%C = tr(TTPTC) — te(TT°T") (2.6)

So after making this replacement our amplitude will now contain many products of traces. If
external quarks are present there will also be strings of matrices which are terminated by the fun-
damental indices associated with the quarks, e.g. (7% ...T™ )lj ). Many of the trace products will
have a repeated index e.g. tr(...7T%...) tr(...T?...) (due to the presence of propagating gluons
which include &, terms). We can simplify these terms further by using the Fierz identity

(Tl (1) = &6 — <878 @.7)
For instance consider a Feynman diagram (shown in Fig. 2) for four gluon scattering consisting
of a chain of gluon three-vertices. This will have a color structure proportional to f@1%b1 fbiasa
where a; are out going gluons and by is the connecting gluon, after re-writing the f%* in terms of
the generators we have 2% = 4 terms. Each of which look like the product of two traces containing

three generators e.g.
to(TOT2TO ) (T THST™) + ... (2.8)

Next we apply the Fierz identity and we end up with two traces

Figure 2: Example topology for a color analysis of a single Feynman diagram.

1
tr(TOT2T (T THT™) = tr(TO TTBT™) — NU(TOTE)u(TOT) (2.9)

Now included in our ... in equation 2.8 is a term which has a3 and a4 swapped, but leaves a; and
ay in the same order, this term also comes in with a minus sign with respect to the piece we just
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looked at. As a result the 1/N, terms cancel. We are left only with combinations of single trace
terms. This is a generic result for the tree-level scattering of gluons, and accordingly an n-gluon
amplitude can be written as follows

O (i dyay) =" 2 Y w(T%0 . T%)A (6(1}),...,0(n™)).  (2.10)
6ESy/Zy

There is a lot introduced in this equation, so lets go through it a little. Firstly we note the notation
{pi,Ai,a;} which corresponds to the information about our scattering gluons, namely their individ-
ual momentum p;, helicity A; and color a;. We’ll talk more about the helicity shortly, but hopefully
momentum and color are by now obvious. On the right hand S, is the set of all permutations of n
objects, while Z, is the set of cyclic permutations. Therefore we sum over the set S, /Z, to define
all inequivalent orders in the trace. We have therefore factorized color and kinematics. The real
work is now in calculating the color-stripped amplitude A,(,O), you may initially think that this is not
much of a simplification, however since there is a specific allowed permutation of gluons we will
be able to infer much about the factorization and pole structure of the amplitude. Which will allow
us to construct clever recursion relations for tree-level amplitudes. Finally we mention that having

q,p
ka 2 1
E(gw(p ~Qu+ (@ —k)v + g (k —p),)
b,V pu o ) 7
YGupGv — 5 (g,uugp)\ + gu)\gr/p)
A P

Figure 3: Color ordered Feynman rules for gluon scattering

quarks in the amplitude adds additional complexities, however for a single quark/anti-quark pair
the sum can be written simply as follows

BN i dyaiy) = g2 Y (T%0 .. To%m)I A0 (14 2% 6(3%),....0(n™)) (2.11)

cES,—2

Where now the sum is over the set of n —2 permutations and each amplitude multiples a matrix
in color space. Upon stripping of the color factors into the above decomposition we can apply
color-ordered Feynman rules, shown for gauge bosons in the figure, which do not have any color
information (but require a consistent order of particles). For a more in-depth discussion of color
decomposition (and a nice discussion of this topic in general) involving multiple quark pairs can
be found in Ref. [78].

In summary we see that the complexities associated with color can be lessened by grouping
the pieces of the calculation together into color ordered amplitudes. Although becoming more
complicated, the same ideas work at higher orders [77, 78]. Thus we treat the color organization
as a solved problem for now, and focus instead on how to go about calculating color ordered
amplitudes.
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2.2 Organizing the calculation II : Helicity

With color under control we turn our attention next to conquering the kinematics. We will do
this using helicity to simplify our calculation. Why is helicity a simplifying feature? Well at all
modern colliders our fermions are ultra-relativistic meaning that |p| ~ E >> m and p?> = 0 is an
excellent approximation for every quark bar the top quark (and occasionally the bottom depending
on your specific needs). For massless particles helicity is a good quantum number, so we can
classify and compute in the helicity basis. In order to fully exploit the helicity structure we’ll move
away from traditional four-vectors and instead re-write our amplitudes interms of 2-component
Weyl-Spinors (which we just refer to as spinors). We construct our spinors out of solutions to the
massless Dirac equation

pus(p) =pliv) =0 2.12)

Here u. (p;) is a right-(left)-handed spinor u (p;) = 1/2(1 £ ¥5)u(p;) (written in four-component
Dirac notation). We would like to construct Lorentz-invariant quantities out of our spinors, and
there are two possible scalar structures,

(ij)y =" j") =u(kiuy (k) (2.13)
iTj7) =uy (ki)u_(k;) (2.14)

~.
~.
—
—~

These products are anti-symmetric under the exchange of i and j.
(i) = =iy lij) = =Lji) (2.15)

You can check with the helicity projection that (i* j=) vanish. We can also build the completeness

relation
TN | 1 1 1
)T+ )] = 5(1+7'5)¢i§(1_7'5)""5(1_75)?@(1"“75) (2.16)
Y@+ = %(H%m,.%(l—w,. 2.17)
Y@+ = p, (2.18)

‘We can also define the useful, Gordon, Fierz and Schouten identities

2pi = (ily"]i) (2.19)
(A7 71k 1] = 2(ik) (L] (2.20)
(i) (kL) = (ik)(jl) + (il) (kj) (2.21)

We can use these relations to relate spinor products to more traditional Lorentz invariant produces

1
sij = (ki+kj)* = 2k = 5 ({1171 ]] = (@) 7] (2.22)
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So we see that spinor products behave like square roots of Mandelstam invariants. This is one
of the reasons why they are natural quantities to write amplitudes in terms of, since amplitudes
themselves are roots of the matrix element squared (which is a function of Mandelstam invariants).

The last quantity we’ll need is the spinor representation of a polarization vector €,. This is a
little tricker since for a massless gauge boson there is an inherent gauge invariance. This means
that the vector is defined with reference to an arbitrary light-like momentum g. In terms of this
momentum we have the following polarization vectors

_ (plwld - _ lplwle)
u(pd) = V20gk) " )= v/2(g]

Its easy to see that these vectors are transverse (€ - p = 0) If you wish to test your budding spinor

(2.23)

skills you can also show that changing the reference momentum g — ¢’ results in a shift in € which
is proportional to p, and, as a result has no physical consequence on the amplitude (by the Ward
Identity).

2.2.1 Anexample ete™ — gg

4

Figure 4: LO Feynman diagram for e™e™ — ¢g in the helicity basis.

As an example lets think about ee™ — ¢gg. To make our lives easier we’ll call the electron
e and the positron e to avoid confusing electric charge and helicity. We’ll calculate the following
helicity amplitude

0 _ _
AV (1%,2,,35,47) (2.24)

there is a single Feynman diagram, illustrated in Fig. 4. We’ll treat all particles as outgoing, as such
the incoming left-handed electron is treated as if it were an out-going right-handed electron (and
similarly for the quark). Thus in the traditional notation we have

AP(17.20.3,,40) =5 (p2) 1 u (1) 5 (p3) Vv () (225)
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Although not explicitly stated in the previous section to avoid an over abundance of definitions, v
spinors can be readily obtained from u ones via the following relationship

Uy = vy (2.26)

Using this we can re-write our expression in the spinor basis

] (4 ul3]

A( >(1j,2e ,3:1’,4q) %15 (2.27)
Using our spinor identities this becomes
24)[13
AV (1,27 37 .47) = < S>1[2 | (2.28)

At this point we have an expression we could code up into Fortran/C++ and coupled with a phase
space integrator we could calculate the cross section for this process. However we can further tidy
up this expression as follows

(24)[13]  (24)[13]  (24)[13](34)

sm (221 (12)[21](38) (2.29)
Then, using momentum conservation
4)[13)(34) _ A @] 4 E)R1] 230)
(12)[21](34)  (12)[21](34) ~ (12)[21](34)  (12)[21](34) '
Thus we see that
24
AP (1E2; 30 ,40) = <1<2><>34> (2.31)

The above equation depends only on the (ij) spinor products, we call it holomorphic. It is our first
encounter of a special type of helicity amplitude in which there are two negative helicity states and
an (arbitrary) number of positive helicity states. These amplitudes are called MHV, which stands
for maximally helicity violating amplitudes. For this four point amplitude we could have also gone
a different way and written it as

AV (1F 2 3 47) =

¢2¢:34:45 (2.32)

This amplitude is anti-holomorphic and is referred to as MHV, of course for this amplitude the two
are equivalent. At the moment you could be forgiven for thinking that the helicity basis induces no
overall simplification at all, since we have only calculated 1 of 16 possible helicity configurations.
However the parity and symmetry properties of our massless scatterers mean that we can obtain
all remaining helicity amplitudes from the one calculated. First we note that amplitudes of the
type Ag )(lj,Zj, 3, +47) vanish, (they end up with a term which goes like (1 —%)(1 + 75)). This
leaves a grand total of 4 amplitudes to compute. They correspond to flipping the helicity of the
leptons and quarks. We can relate these helicity flips to conjugation and parity operations on our

existing amplitude. For example operating on our amplitude with charge conjugation on the lepton
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line exchanges labels 1 and 2, which can be thought of as flipping the helicities of our original
amplitude e.g.

(142

0) (1= 2+ 3+ 4 0) 1+ + 4 0) 1+ + 4
Ay (15,2 =A, (17,25 =A, (17,2, =

e?e?q?q e7e7q7q e7e7q7q (233)

We could use the conjugation operator to get all of the amplitudes, but its also useful for us to in-
troduce parity at this stage too. The Parity operation exchanges all of the helicity quantum numbers
and thus changes (ij) <> [ij]. For instance

AP, 25,3,,40) =AY (15,2,,30 147 ) <o (2.34)

erTervqg er“ervqr g

So by combining conjugation and parity operations on helicity amplitudes we can obtain many new
amplitudes from our existing calculation.

2.3 Computing arbitrary matrix elements at LO

We’ve seen how to organize a general multi-parton calculation in QCD, now we’ll look at
some ways of calculating arbitrary processes.

2.3.1 On-shell recursion, the BCFW relation

We begin by investigating on-shell recursion techniques, originally discovered by Britto, Cac-
hazo and Feng [79] (and then proven in generality with Witten [80]). This proof is a beautiful result
which relies on some Complex analysis and the simple factorization properties of tree-level results.
The BCFW recursion relations hence represent a remarkably simple yet deep approach to the cal-
culation of tree amplitudes in gauge theories. Essentially they show that the entire spectrum of tree
amplitudes can be calculated in a theory from knowledge of the three point vertices alone. The
proof is remarkably simple and relies only on complex analysis and the universal factorization of
tree amplitudes. There has been a huge range of applications of the recursion relations, for instance,
from formal developments in QFT [81, 82, 83] to phenomenological applications in QCD [84, 85].
Here we sketch the details of the proof. One begins by taking an on-shell amplitude (for now we

(0)

consider massless particles in the final state) A, and selecting two of the partons p; and p; for

special treatment. We wish to shift these momenta such that overall momentum conservation is
retained

<. . <. .
i =P S Py Pl = S (2.35)

We note that p;(z) + p;(z) = pi + p; such that local momentum conservation is clearly preserved.
Furthermore

PHE) = (Pl 4+ 5 1P 1) (s + 5 17l ) = 0 (2.36)

which implies that p;(z) is also on-shell. The shifts we have made are equivalent to the following
spinor shifts,

i) — |i) + 2| j) (2.37)
7] = 11 ==l (2.38)

10
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A

Figure 5: Residues in a tree-level Feynman diagram can only occur when an internal propagator goes on-
shell resulting in the factorization into two on-shell tree amplitudes.

whilst leaving |i] and | j) unaltered. This breaking of symmetry between angle and square brackets
breaks a conjugation symmetry for our momentum vector p;(z). As a result the momentum p;(z)
is no longer a real Minkoswki momentum, but instead is complex. Under our shift our amplitude
ASLO)(. ..yi,...,J) becomes a function of the shifted variable z. i.e. A A0 (z). Although now
a function of the complex variable z, the shifted amplitude bears many similarities to the physical
amplitude. Namely momentum conservation and on-shell final states. We note that since the tree

level amplitude contains no functions with branch cuts AE,O) (z) is a rational function in z. The

singular structure of the amplitude AE,O) (z) is completely determined by simple poles in z. This
can be seen by considering how poles of tree-level amplitudes occur. Tree-level amplitudes can

only develop a pole when an internal propagator goes on-shell i.e. Pazbc

generic combination of external momenta. Since propagators are quadratic one may expect that

— 0, where P, 1S some

double poles in z could arise, however if the propagator P, g goes on-shell and i € {a,..., 3},
j¢{a,...,B} then we have,

Z,. g . .
Po p(@) = (Pt +pl + S Ui+ o+ pp) = Py _g+2{ilPa..pli] (2.39)
Which clearly can only have a pole if

2
Pa...ﬁ

2.40
(lPa gl (240

I=zi=—

and the lack of a z? term ensures the presence of only simple poles. On the other hand If both
ief{a,...,B}, je{a,...,B} then the z dependence drops out through the momentum conservation
argument discussed above.

11
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Now that we know the amplitude is a rational function with simple poles so we can write its
Laurent series as follows

i

An(z) =Y, Ciz, +Y did (2.41)
! k=0

Since we know that there is some maximum power of |i) and |;] in the amplitude we can truncate
the series at m. Now assume we can choose a shift with the properties that A,SO (z) = 0as z— oo,
This is by no means guaranteed for all possible shifts of pairs of external momentum, but in general
it is possible to find at least one shift which has this property. Now in this case d; = 0 for all k and

c:
Az) =) — (2.42)
what we ultimately want is to calculate the physical amplitude A (0) which is given by
A0)=-Y 4 (2.43)
Zi

i

So all we have to do is classify the possible poles induced by our shift z;, and their associated
residues c¢;. This is where the nice factorization properties of tree-level amplitudes come into play.
For a specific residue z; we can constrain the possible topology via factorization. Firstly we know
that every external leg as well as the internal propagator Py, g is on-shell. Secondly we know that
momentum is conserved amongst the sub-set of particles, i.e.

Pa+...pp+Py. p(z) =0 (2.44)

as such the subset of external particles @, ... B plus the on-shell propagator leg P . g form a physi-
cal scattering amplitude with a subset of the external momentum. Exactly the same argument holds
for the other subset of momentum (which included p; in our discussion), so both sub sets of parti-
cles form scattering amplitudes, with fewer external momenta then the total amplitude. So in this
limit our amplitude can be written as

Al(2)AR" (2)
h;[ L PZ(Z) (2.45)

here Ay represents the particles on the “left" side (i.e. {c,i...,B} and Py g in our example) and
Apg represents the remaining particles on the “right" hand side. Since the internal propagator could
have either positive or negative helicity we sum over possible states, denoted by 4. We can readily
map this onto our Laurent series by writing

P2(2) = (j|Py. plil(z—2) (2.46)
such that
Al (z)AR" (z)
;= “LeUTR 2.47
(1Pa.pli 247)
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To obtain the full amplitude we thus have to sum over all possible residues,

_ Al)AR (@) Al (z)Ag" (z:)
MO=L XL Glp, gl XX P2, ,0) (248

The physical amplitude we seek is then given by

Ah iA_h ;
Aq(0) :th‘i L(;g .RB (@) (2.49)

This is the BCFW recursion relation. We note that when maximally applied it tells us that any
tree-level scattering amplitude can be constructed solely from three-point vertices. At the cost of
introducing complex momentum. Before moving on lets have a little example so you can see them
in action .

2.3.2 Example : e"e” — ggg.

+
3 i
pgﬁ(Z)
9=
6+ X 1+
5
5t 4=
p56 27
1+
69 3t

Figure 6: Diagrams which we have to compute given for our chosen shift in our BCFW example calculation.

As an example lets compute the following amplitude

AV (1F,2; 37 47,57 (2.50)

e )<e q ) q ) g
We recall that the four point amplitude is given by the following

24)?
AP (1.27.35,47) = <1<2><>34> 2.51)

13
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Additionally we’ll need the following three-point vertices from QCD

(13

(0)
AV (1F,22,30) = T

=3 (2.52)

We’ll shift the negative helicity quark (p4) and gluon. We’ll delay specifying exactly which shift
until we’ve seen a consequence of complex momentum. Regardless of which shift we choose there
is only one possible diagram, with the gluon and un-shifted quark on the left-hand side defining

1

$35

e »“e

AV (1 2;,35,47,50) = AV (37,55, Ps) —A

e?e?q?q?g

AP (F 2, P4 (2.53)
Lets look at the consequences of complex momenta, momentum conservations tells us that

(ps+p3)? =0 = ps-p3=0 (2.54)

(53)[53] =0 (2.55)

A spinor product (ij) = 0 implies that i o< j, that is i and j are collinear. For real momentum |i) and
|i] are related by conjugation, so (ij) =0 = [ij] = 0. Therefore for real momentum all 3-point
vertices of massless momentum vanish. However for complex momentum we can have the case
where (ij) =0 and [ij] # 0, or vice versa. What does this mean for us? Well we know that in our
amplitude we will obtain factors of [35]. We would like this one to be non-zero. This implies that
we should shift the negative helicity spinor and leave the positive helicity spinor alone. If we had
done the alternative then we would have found that we have no residues (since the amplitude would
vanish), but we would have a large—z behavior which would invalidate our recursion. However by
choosing

15) — [5) +z[4) =|5) (2.56)
4] — 4] —z|5] = |4] (2.57)

This allows us to set (53) = 0, and have [53] = [53] # 0. We can now evaluate our amplitude

() + + + 357 1 (24)
17,2,,37,4..5 —— 2.58
o2 30830 = B s (1) a( Py 239
Inserting our definitions, this can be re-written as'
() + + + [35]? 1 (24)?
15,2,,34,44,5 5 2.59
o2 3ade 30 = L B33 (12) (-39
We can simplify this further by recalling that
N Z A
Pl = Pis+ S (417"15] = (41P]3) = (4]Pss[3] = (45)[53] (2.60)

IThe astute of you may worry about what happens with the minus sign inside of the spinor product in this step.
When I reverse the sign of a Lorentz four vector this is equivalent to multiplying the spinors by a factor of i, I have been
overall sloppy with my factors of i, which should be included every time I have a sub-amplitude, therefore we simply
drop this i under the assumption that every amplitude should have an associated i dropped for notational connivence.

14
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So

24)2

AO(1F, 2 354 5y = A7 2.61
s (1e:26:3:493¢) (12)(35)(54) (2.61)
and we’re done. An interesting way of re-writing this amplitude, which will be useful when we
discuss factorization later on is

_ _ 34 24)?
AP 020 30450~ iy () e

where we recognize the term in brackets as the four-point amplitude.

We can readily extend our analysis here to calculate the 6-point amplitude as follows. All we
need to know in addition to our current knowledge is that in QCD amplitudes of following form
vanish

AV 283t nt) =0 (2.63)

q°°q>
i.e. amplitudes which contain a single quark anti-quark pair and any number of positive helicity
gluons (where for us using complex momentum »n > 1). As a result when we extend our recursion
to the 6 point amplitude we only have two terms to evaluate, which are presented in Fig. 6. That is
we can define the amplitude as the sum of two terms

AV (132,35 42.55,60) = 2+ Dy (2.64)

e '"“e " q b q b g ) g
The first diagram is similar in structure to our 5-point example above,

0 PUEPSEN BN _ s oAl
1 = Al )(3;,6;,P36)gAg (12,2, ,~ Py, 4-.50) (2.65)
here we have shifted pg rather than ps but that is of little consequence. We could follow exactly

the same steps as before finding the single diagram gives

24)%(63
o eare] (2.66)
(12)(36)(45)(5|P[3]
Inserting our definition for P we see that
P = (5|P|3] = (56)[63] +z(54)[63] (2.67)
Now we have to solve for z explicitly, using the formula from the previous section
(36)
=— 2.68
°T 34y (2.65)
and we have
(24)?
7\ = (2.69)
(12)(36)(45)((36) (45) + (34)(56))
We use the ultra useful Schouten identity to write this in the compact form
(24)*(34)
9 = 2.70
T (12)(35)(36) (45) (56) 270)
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Turning to the second diagram and using our known amplitudes we see that

|

2, =AY (5;,6;,P5—6)s56 AQ(F 2, B4 3] @.71)
The three gluon MHV amplitude is given by
©0) 1+ 7+ 23— [12)°
Ay7(15,25,3 2.72
( gr<g> g) [23”31] ( )
‘Which allows to define &, as follows,
—(24)?
D, = (2.73)
(12)(z56(34) + (36))(45)(56)
and here the solution for a residue in z occurs when
(56)
= —= 2.74
756 (45) (2.74)
which allows us to write
—(24)? —(24)?
(24) = (24) 2.75)

(12)(z56(34) + (36)) (45)(56) ~ (12)(35)(46)(56)

Putting the two terms together to obtain the total amplitude (after one further application of the
Schouten identity) we see that

(24)2
(12)(45)(56)(63)

We have thus seen how the BCFW recursion relations can be used to quickly compute a 6

A1 2 38,4255 61) =

e’e?q’q?g’g

(2.76)

point amplitude. An advantage of all recursion relations is how readily they can be implemented
numerically. This allows for rapid generation of high multiplicity final state amplitudes from the
working knowledge of lower point amplitudes. This section has introduced two of the key concepts
which allows for generation of arbitrarily high multiplicity final state processes at the LHC, color
decomposition and recursion. By cleverly applying theses tools modern generators can produce in
a reasonable time, a LO cross section for any process of phenomenological interest at the LHC. In
the next section we will address how to go beyond LO. Increased precision is mandatory, since it
has been repeatedly demonstrated that a LO prediction in QCD is woefully inadequate of describing
data.

3. Next-to-Leading Order computations

3.1 Introduction

Thus far we’ve focussed our attention on how to efficiently construct tree-level amplitudes. We
are now ready to turn our attention to the next order in perturbation theory, corresponding to Next-
to-Leading Order (NLO) computations. Over the last 10 years our tools for NLO computations have
become so advanced that essentially any process relevant for the LHC program can be computed
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at this accuracy. At the heart of this revolution were the new techniques inspired by unitarity cuts.
All modern one-loop generators [86, 87, 88, 71] use methods based upon these techniques to some
extent.

The most obvious difference for NLO computations with respect to tree-level counterparts is
the presence of loop-diagrams. Loop-diagrams by construction contain a unconstrained momen-
tum, which must be integrated over. Compare to tree-level scattering the complexity of the integrals
is significantly increased. As the number of closed loops increases the complexity does also. In
general the approach is to reduce the amplitude from a generic expansion to a smaller set of Master
Integrals (MI’s). As the number of external particles increases, the difficulty in the reduction does
too. After reduction the MI’s themselves have to be evaluated. It is here that new complications
arise. Most higher order loop diagrams contain multiple divergences, both at high values of the
loop momentum (¢ — o) known as Ultraviolet (UV) divergences, and at low values of the loop
momentum (¢ — 0) known as Infrared (IR) divergences. Both must be regulated, and typical are
done so using dimensional regularization (in which the number of spacetime dimensions is altered
from four to d =4 — 2¢, the IR and UV poles thus emerge as inverse powers of €. Of two types
of poles those attributed to IR physics are much more complicated when attempting to construct
a Monte Carlo code designed to make predictions for differential distributions at the LHC. This is
because the IR singularities are spread across different phase spaces, and therefore the cancella-
tion of the singularities is far more intricate then the analytic operation of renormalisation, which
handles the UV divergences.

The aims for these lecture notes are thus three-fold

e Introduce unitarity techniques, such that you can have a basic understanding of what goes
into modern one-loop generators.

e Introduce IR factorization principles
e Demonstrate the cancellation of IR poles in a Monte Carlo using a subtraction approach.

I’'ll assume that you have all been introduced to renormalization in your graduate lectures, and
therefore not focus too much on these aspects. Ideally at the end of these lectures you will have a
good understanding of the physics behind NLO generators. This section will introduce and discuss
unitarity methods, while the next will focus on the complications arising from IR singularities.

3.2 Virtual Corrections

For a process which is non-zero at tree-level there will be two types of corrections which
enter at NLO. These correspond to two types of topologies. Since each vertex brings a factor of
g we require two vertices to obtain our &(a) o g* correction. The two types of topologies thus
correspond to the two possible ways of connecting the new vertices. Firstly we could dress a single
tree-level diagram with two vertices. Since this has to interfere with the original tree-level process
its clear that the two additional vertices must be ultimately connected such that no new final state
particles enter the correction. Thus we are describing a correction which has a closed loop topology.
On the other hand, if we dress the diagram with a single emission, we collect one additional factor
of g and one additional final state particle, this can then interfere with itself, obtaining g in the
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sum. Since these topology contains a new final state particle, it modifies the kinematics of the
LO topology. These topologies are thus referred to as “real" (the loop topologies are known as
virtual, since the emission never exists as a final state particle). In this section we will focus on

>id; +Xi¢ +X;b; +R

Figure 7: A basis for one-loop amplitudes in terms of box, triangle and bubble integrals and a rational
function. The coefficients are rational function of the external momentum.

virtual corrections, leaving the real corrections to the next section. At one-loop it was shown in the
mid-90s that an arbitrary multi-particle final state can be written in the following basis [89]

A =Y dili+Y c;l{+ Y bl + % (3.1
i 7 %

In the above equation I’ represents an n-propagator scalar loop integral. For example I corresponds
to a box-integral with four propagators

ar 1
P,P,P;
I o / (27)4 (2(0 — P)2(0 — P,)2 (0 — P5)? (3.2)

Where P; is some combination of external momentum, and the summation over i corresponds to
all possible ways of assigning the external states to a box topology. In the above formula’s we’ve
implicitly (and explicitly) presumed that the internal particles as massless. Massive particles in the
loop also contribute tadpole terms Y a;/ i The term & denotes a piece which is a rational function of
the external invariants. The coefficients d c etc. are all rational functions of the external momentum
and do not depend on the loop momentum. Pictorially this basis is illustrated in Fig. 7.

At first glance, the decomposition into the above basis seems quite remarkable. Since in
general we would expect an n-point loop integral to be present for a process with n particles in the
final state. Such Feynman diagrams to appear at the loop level, of course, but as was shown in
Ref. [89] these pentagon and higher point integrals can be reduced down into this basis. The proof
of this result is beyond the scope of these lectures but can be found in the original reference. The
only assumption we made is that we require an expansion accurate to ¢(&") and that our external
states live if four-dimensions. If an all orders result in the regulating parameter € is required, a more
complicated basis which includes pentagons and higher dimensional boxes, triangle and bubbles
(but no rational part) can be used. However for our purposes the above basis is fine.

3.2.1 Unitarity cuts, an introduction

Now that we have a basis our next step is to try to construct a tactic to isolate the coefficients
of each term. Once we’ve done that our one-loop process is completely solved. At the heart of
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Figure 8: Factorizaton of a quadruple cut of a loop amplitude onto sub-amplitudes.

the modern methodology is a divide and conquer approach inspired by unitarity. The principles
of unitarity have been around for a very long time and can be related back to the unitarity of the
scattering matrix S. i.e. STS =11[90]. We normally write S = 1+ iT where we isolate the forward
scattering part. Now we can use the unitarity of S to constrain 7.

(1—iTH(1+iT)=1 = i(T"-T)=T'T (3.3)

We identify i(T" — T) as twice the imaginary part of T, which comes from its discontinuity across
a branch cut.

We can use the analytic properties of the S matrix, coupled with perturbation theory to address
how these discontinuities play out at each order in perturbation theory. Assuming our scattering
has a leading power of g we have at NLO

T=gTO 441V 1 . (3.4)
and putting into our equation we see that

i [(TW —TO) 4 (M - T(”)] b= gTOITO (3.5)
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That is we see that

DiscT® = 0 (3.6)
DiscTV) = 770 (3.7)

The first line here simply re-affirms that tree-level scattering amplitudes are rational functions of
the external kinematics. The second line tells us something interesting. We can reconstruct the
discontinuity of a one-loop amplitude across some particular cut from the product of two tree
level amplitudes. Implicit in the above equation is that we integrate over the final state particles
connecting the two 7 matrices together. We also implicitly sum over the helicities and types of
particle which can propagate inside of the cut.

Lets consider a specific discontinuity associated with a grouping of external momentum, lets
say s1o where there are n final state particles present. What the above equation is telling us is that
we can compute the discontinuity of the one-loop associated with 51, = (p; + pz)z as follows

d
Disc(s12) = (27)* ) / éﬂf S8(08H ()AL (01,2, A (07 3, n, 6, ™)3.8)
h

where ¢, = £ — Pj; and (") (p) = ®(p°)8(p?) puts the cut momentum on their mass-shell with
real positive energy solutions. The remaining integration corresponds to the integration over the
two-body final state phase space of the cut particles.

The power of the unitarity method comes when we couple it with a Feynman diagrammatic
approach. That is to say we couple it with our basis expansion given in equation 3.1. As stated
previously the coefficients of our basis are rational functions in the external kinematics, therefore
in order to have a discontinuity associated with sy, the basis integral /; must depend on s> as one
arguments. That is to say the set of propagators ¢> and (£ — Pj»)? must be present in the loop. We
therefore write

Disc(si2) = Y diDisc(l) + Y ¢;Disc(l3) + bioDisc(1?) (3.9)
i€i1n Jj€j2

In the above equation i1, denotes the set of all box integrals which contain £ — Py, as a propagator
(and similarly jj» for the triangles), since there are multiple box configurations which have this
propagator we sum over all of these terms. There is of course, only one bubble which enters the
sum, since there is only one bubble which has the correct pairing of propagators. We note that
there is no process specific information in each Disc(I’) since they are scalar integrals these can
be computed once and for all. So by equating eqgs. 3.8 and 3.9 we obtain information about the
unknown coefficients d, ¢ and b which enter into our calculation. This is the heart of the unitarity
method pioneered by Bern, Dixon, Dunbar and Kosower in the mid 90’s [91, 92] and was used to
compute previously intractable problems [93, 94, 78].

3.2.2 Generalized unitarity and quadruple cuts

A drawback of the method described above is the entanglement of the various coefficients with
one-another. As we perform cuts across different groupings of final state momenta we invariably
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encounter multiple boxes and triangles which enter into each of our cuts. Separating out the various
contributions can be a time consuming and tricky task. We can significantly enhance the unitarity
method if we drop one of the requirements, namely that our cut momentum correspond to physical
momentum which have real positive definite momentum. Instead we think about a set of solutions
to the loop momentum which solve the constraint equations ¢ = ¢3 = 0 where ¢; and ¢, are two
of our loop propagators entering into our Feynman diagram. By summing all of the Feynman
diagrams under this solution we obtain the following

I o
EAS )(01,{P},~ )

1
ﬁAé‘” (6, {Py},— 1) (3.10)
2

Where Ago) and Ago) denote tree-level amplitudes which depend on our cut momentum ¢; and ¢,

and subsets of the external momenta {P;} and {P»}. Our usual result for the calculation of the
discontinuity is obtained by using the Cutkosky rules to replace the propagators by delta functions
as follows

zlz = 2m)8H(0) 3.11)

and we recover the integrand from the previous section.

In principle there is no reason to stop at two constraints. If we assume that the loop momentum
is four dimensional then we can impose up to four constraints on our loop momentum [95], i.e. we
choose four pairings of the loop momentum and external kinematics

b=t b=0—P l3=0—Py ly={(—P (3.12)

and demand that 3 = ¢3 = (3 = (3. For this configuration our one-loop integrand will factor onto
the product of 4 tree-level amplitudes

1

WA?) (1, L)AL (01, 0)AY) (03, 03)AL (03, 04) (3.13)
1%2%3%4

Since there are four degrees of freedom for £ and four constraints we completely solve for the loop
momentum algebraically and we can write

AP (01, 0)AY (01, )AL (02,03) A0 (83, 04) = d (3.14)

Whats left is, upon application of the Cutkosky rules, the cut of a Feynman integral with four
propagators, there is only one term in our basis expansion which has this, namely the scalar box

Py,Py,P .
I,'"*"3. Therefore we have, using four

associated with our specific choice of external momentum
cuts instead of two, uniquely isolated a single box coefficient. By doing every allowed four cut we
can then identify every box coefficient which enters into our one-loop expansion.

With the boxes in hand we can then turn our attention to three-cuts, fixing three out of the four
loop momentum, and leaving the cut integral as a single parameter integral. Now the boxes will
pollute our triple cut and we will be left with a single triangle, and multiple boxes, but by a clever
parametrization of our solution we can easily disentangle the two types of contribution and isolate

the single unknown triangle coefficient. Similarly with the double cut we parameterize our loop
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momentum solution such that the extraction of the unknown bubble coefficient is also simple. By
this repeated divide and conquer approach the individual coefficients in the basis can be isolated.
There are complications and subtleties with each method, such as in order to fully reconstruct the
amplitude some d dimensional information must be restored to isolate the rational term. But by and
large this repeated cutting and multiple particle factorization is what lies at the heart of automatic
one-loop generators. Its probably not the best use of our time together for me to go into explicit
detail about each method, as I'd also like to cover sufficient material on IR regularization. So
instead I’1l give a quick box example, as they are analytic problems. Afterwards you’ll be in a good
position to learn more about the methods if you are interested. I wholeheartedly recommend the
following references [95, 96, 97, 98, 99, 100, 101, 102] if you wish to learn more.

3.2.3 Example : ¢"

e —qqg.

1-|-

4

Figure 9: An example of a one-bass box coefficient for the Leading Color contribution for eTe™ — ¢gg

As an example lets consider the box coefficient which occurs in the process e™

e~ — qqg at
one-loop. We’ll look at the leading color contribution, which is sketched out in Fig 9. There is
a single box which has the leptons as a massive corner and three massless legs (we call it a one-
mass box). The coefficient of the box is obtained from the product of four tree-amplitudes, the
cuts are illustrated in the figure. The helicities of the fermion line is completely fixed by helicity
conservation at each vertex (recall that we have an all outgoing convention so the particles flip
helicity across a cut line). And we need at least one negative helicity gluon at the triple gluon

vertex to obtain a non-zero amplitude. The helicity of the internal gluon propagators therefore
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appears to take two possible assignments, which are explicitly labelled in Fig. 10. We note that
one has an alternating MHV and MHYV structure and one does not. A consequence of complex
momentum solutions to the three-point amplitude is that the configuration which does not have

the alternating structure vanishes. This can be readily seen. We require that |¢;) o< |4) from the
bottom right vertex to ensure the solution to the cut condition coincides with a non-vanishing three
point amplitude (which depends on |¢;]). However a similar requirement from the adjacent vertex
also imposes that |¢;) o |5). This can only be satisfied if the unphysical restraint p4 < ps is true.
Therefore this contribution must vanish. Our remaining option gives,

1+

1+

Figure 10: Possible assignments of helicity for our quadruple cut example for eTe™ — ggg

AWV (1,2, 35,4250 ) 0, = A8 (07,57 ,6,) A8 (0,37 05)A9" T (d 1727, 0 AT (0F 4 (BH15)

e?e?q?q?g
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Now we have to setup the solutions for the loop momentum ¢;, which means that each of the four
loop momenta is on-shell £2 = 0. Momentum conservation defines each constraint equation as

6B=0 (3.16)
G = (lh—p3)*=0 (.17)
2 = (l,—P3)*=0 (3.18)
G = (lh+ps)>=0 (3.19)

We have four constraint equations and four-unknowns, so we can completely solve ¢,. We begin
by choosing our parameterization of ¢, which can be written in-terms of a basis of four mutually
orthogonal light-like momenta

6
& = aph + Bk + S 31915+ £ (514)3] (3.20)

We’ll now use the constraint equation to solve for the coefficients, firstly we see that the second
condition implies that p3 - £, = 0 which tells us that

0=pBps-ps (321
and B = 0. Similarly the final constraint implies that o« = 0. The on-shell condition implies the
following

0
0= 7”%5 (3.22)

So either 6 or p are zero. There are thus two solutions which satisfy the propagator equations (as
they’re quadratic this is hardly a surprise). We take p = 0 so that

15}
& = 31rs] (3.23)
The final condition allows us to solve for § since 2¢; - P13 = s123 or more conveniently —2/; - Py5 =
s45 and
54
—0(3|4|5] =545 = 6= §34i (3.24)
We can thus write the loop momentum as follows
54)
= 339 5 3.25
Using the following gluon 3-point MHV amplitude
_ _ 13)3
A%88(17,217,37) = <7 3.26

We can construct our coefficient as follows, the four tree amplitudes give us the following
3 2 72 2
G SR D) o
(€15)(625) [363] ) \(£3£4)(12) ] \ [444]
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We now proceed to systematically remove ¢; and ¢3 and ¢4 using momentum conservation, for
example

(02)2[0401 )7 = 2]4]61)7 = (2]2 4 Pys| 1] (3.28)

Repeated application of this type of identity allows us to re-write the coefficient solely in terms of
2

[362][52] (2|62 +4I5]
(12)[265][54]

dy = (3.29)
At this stage we can already see why we choose the p = 0 option for our loop momentum. The 6 =
0 solution would have given as a solution where |/5] o< |3], and as a result this solution would vanish
for this particular example (for simple one box topologies like this one this is not uncommon).

We can finish our calculation by making our replacement for our loop momentum solution
finding,

(24)2[53][54]

h=""0)

= s3ssusAL (13.27,37,47,57) (3.30)

That is the box coefficient factorizes nicely onto the tree-level result.

3.3 Real Corrections

The previous section discussed virtual corrections. There is a second source of higher order
corrections, corresponding to when an additional particles are radiated from the tree-level topology.
Since these particles can (in principle) be observed in the final state, these corrections are known
as “real" corrections. On the one hand real corrections are simpler to compute, since they have
less intricate mathematical structure then virtual corrections. However they also introduce their
own complexities when attempting to make Monte Carlo code to perform phenomenology at the
LHC. This is because, while the extra emission can in be observed in the detector as hard radiation,
it is not required to be there (since the requirements define the LO final state). This means that
we include regions of phase space in which additional emission are associated with vanishing (or
unresolved) emissions. In these regions of phase space the matrix element becomes singular, as
it must, since these regions of phase space exactly compensate the IR singularities arising from
the virtual matrix elements. Thankfully the singular behavior of tree-level matrix elements can be
understood via factorization. In dealing with NLO computations this is critical, since it allows us
to apply universal terms which can be used in any QCD computation. We’ll now study the different
limits of QCD amplitudes to get a feeling for the factorization

3.3.1 Soft limits of scattering amplitudes

We recall our amplitude for e*e™ — ggg.

- _ 34 24)?
AP 0220 304050 = iy () 630
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What happens to the amplitude as ps — 0? Well the above factorization is already manifest we can
write

AV (1F,2;,35,47,55) = 7(3,4,5%) x AV (17,2,,35,47) (3.32)

q°78 er~er7qr 'q
where we have defined the following Soft (or Eikonal) factor
(ab)
(as)(sb)

In the above notation c is the soft gluon and a and b are the two adjacent colored particles. Although

[ab]
[as][sb]

S (a,b,c) = S (a,b,c™) =— (3.33)

this was a very simple example this is actually representative of the general factorization of QCD
amplitudes in the limit of a soft gluon emission

AV(1,2, . asT b, ) =y 0 L (a,b,sHAY (1,2, a.b,. .. n) (3.34)

n—1

You may worry that we only proved this for gluons going soft with respect to a quark pair. But this
is is fact independent of wether the adjacent particles are quarks or gluons. The soft limit of QCD
is insensitive to the emitters helicity, or spin, it only depends the angular direction of the emitting
particles.

3.3.2 Collinear limits

The other type of IR singularity occurs when two particles become collinear (or parallel) to
one another. In our example e™e™ — ¢gg, such singular configurations would correspond to the
gluon becoming collinear to either one of the fermions. In the collinear limit (e.g. 3||5) we see that

s35=(p3+ps)? = (p3+Ap3) 2 =(1+2)*p3 =0 (3.35)

So the invariant s, associated with the parallel particles a||b vanishes. Normally we do not pick
out a or b to be special (as done in the formula above), but instead introduce a new momentum
Pc = pa+ pp Which both are parallel to i.e.

Pa~zpe pp~(1—2)pc (3.36)

such that overall momentum is conserved in the limit. We can use the above equations to relate
how the spinors behave in the limit,

@) = Vzle)  la] & Vel 3.37)
|b) ~V1—z[c) |b]=V1—z]c] (3.38)
(3.39)

Taking this limit in our amplitude (3||5) we see that

AV 27,3747 .50) = (34) ( < (24)° ) (3.40)

erTerTqr g g (35)(54) \ (12)(34)
1 (24)?

~ 341

VT=2035) (12)(4<) (3.41)

= Split_(3},5; 3204 (13,2, ¢} 47) (3.42)
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Where we have introduced the splitting amplitude Split_ (3;, 5;;2). This is a specific example of
the general factorization of QCD amplitudes in this limit

AV(1,2,. %) g Y Split (@b, 073204 (1,2, ¢, n) (343)

Ae=%

Note the differences with respect to the soft limit. Here the species and spin of the particles involved
in the limit is crucial. In general we have to sum over both possible helicity states of the combined
particle c. However in our example there is only one non-zero contribution.

4. Dealing with the IR singularities

Next we would like to deal with the IR singularities, so that we can construct a working Monte
Carlo code. We’ve seen the basic problem over the last couple of sections.

e Loop integrals contain divergences which manifest themselves as poles in 1 /€ (virtual)

e Real emission amplitudes are singular in regions of phase space where emitted partons can
be soft or collinear.

These two types of singularities are intimately related, but at first glance appear rather different.
The virtual singularities reside in the LO phase space (i.e. they have the same number of final
state particles as the LO process). The real singularities have an extra emission which must be
integrated over inclusively and thus have a larger phase space for integration. To get the idea of
how to proceed its actually easiest to introduce a toy model which shares the same spirit as the full
QCD calculation, but has simpler mathematical structure. I’ve taken this toy model from the one
presented in the Black Book of QCD by John Campbell, Joey Huston and Frank Krauss [59]. This
book is an excellent comprehensive overview of QCD and I thoroughly recommend it to you.

Our toy model is constructed as follows, we first consider a LO (Born) matrix element (with n
particles) which is IR and UV finite (we can treat it as a constant for now)

B =Y |4 (4.1)

We now compute NLO corrections in our toy model, obtaining virtual and real corrections. We
assume that any UV divergences in our model have been removed and that the remaining renor-
malized virtual correction is of the form

_Va (0) (1)
¥, = . =Y | | (4.2)

That is a constant divided by a single pole in €. Finally in our toy example the real emission
matrix depends only on a one-dimensional phase-space parameter x € [0, 1] and the matrix element
diverges as x — 0. So that we can write

4.3)

Where R, is a regular function over the full integral.
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Our NLO cross section is thusly obtained by integrating out x and combining it with the Born
and Virtual contributions, i.e.

MO — (B, + Y] Ff+/ dxT0n()FY, (x) (4.4)

In the above equation I've introduced one new factor, the function F;. This plays the role of
defining an infrared-safe observable. We can think about this as ensuring that the LO process is
free of singularities. For example if we were looking at 3-jet production at the LHC we would
require the jets to be energetic enough ( above a certain pr) and well-separated from each other to
avoid overlapping phase space regions. The virtual part shares the same phase space as the Born,
so the same function can be applied there too. We have to be a little bit more careful in the real
contribution, since the presence of x could alter the function. In order for our calculation to make
sense it must be the case that

n

. J J
)lclir(l)Fn LX) =F 4.5)

This criterion is our toy model manifestation of the need to work with infrared-safe observables.
Otherwise the concept of NLO corrections loses meaning. Inserting our definitions of the toy model
the problem we are trying to solve is

;! dx
= B+ I+ [ R ) 4.6)
We’ll now look at some techniques for computing our NLO cross section.

4.1 Phase space slicing

We begin by implementing a regularization prescription on our divergent real integral. We

—1—€

modify the 1/x term, replacing it with x such that our desired physical amplitude (and associ-

ated divergence) occurs at € = 0. Our NLO correction is then given by

g [ R0 @)

We are free to introduce a parameter § which lies somewhere in our integration range, splitting the
integral accordingly.

3 dx
+/ xl+e R n+1 +/ xl+e R n+1( ) (4.8)

At the moment we’ve simply done some PR. However if we choose § such that 6 << 1 then we
can approximate

Ry(x)Fly1 (x) = Ra(0) (4.9)
in the first integral, yielding
v, S dx I dx
() :?"F,HR,,(O)F,{/O EY: +/5 WRn( X)F (%) (4.10)
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Or, re-arranging

v, S dx U dx
o) = (L) [ 45 )+ [ EREL ) @1

The second integral is no longer divergent for any non-zero choice of &, so we can set € = 0 here.
The integral in the second integral we can write

o — (Vn_‘”R >F1+/ WE L (x) 4.12)

£

Expanding as a power series in € we find.
Vu— Ry (0 1 dx
o) = <(8()) +1log 6R, (0 )F’+/ X)FL(x) (4.13)

Our toy model will thus obey the KLN theorem if the following result holds

lim R, (x) = R,(0) =V, (4.14)

x—0

Assuming this is the case then our final correction is given by

ol =logé- VFf+/ W(X)F () (4.15)

There are several things to say about this result. Firstly we note that the dependence on € is
completely gone, we can set € = 0 everywhere with imputinty and integrate our results in four-
dimensions. Secondly we recall the approximate nature of how we simplified the integration of
the real matrix element in the region of small §. This is by nature an approximation, so we know
that it will break with corrections expected at ¢'(8). The method is therefore only useful for
any kind of practical application if 0 is taken to be very small, such that the power corrections
not included in our approximation are negligible in the total. The drawback of this approach is
immediately obvious from closer inspection of the residual integral over the finite phase space of
the real amplitude. Since & is now very small we push ourselves towards the divergent region of
the real matrix element. This means that this integral is rather numerically unstable, and requires
significant computational resources to perform (how significant depends on what sort of calculation
we are doing). Further as § shrinks the magnitude of both the virtual term and the real term
grow logarithmically (in this toy model, they actually grow like log? at NLO in QCD and log* at
NNLO). Large numerical cancellations such as these are very undesirable from a computational
viewpoint, since this means that both have to be integrated to a very high precision. On the plus
side however, this method is extremely easy to implement, especially if you have a good way
of doing the resolved integral, since this always has non-zero emission it looks like a tree-level
process. Finally there is the term R, (0)F/ itself, which is used in the approximation. This has to
be constructed appropriately from the un-resolved limits of the real matrix element. We know the
factorzation properties of QCD amplitudes, so there is some hope. But there are still complications
which render this bit tricky, for example even at NLO the situation is not 100% obvious. Consider
a process with three final state partons p; and p, and p;, where we assume that p; and p, are hard
fermions and p; is an emitted gluon which can be soft or collinear. If s;; — 0 and s;, # 0 then
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Figure 11: Phase space slicing at NLO

the gluon is collinear to p; and the approximation we would like to use for our matrix element
in this limit is given by our splitting function multiplying the LO matrix element for 2 final state
fermions. However what happens as s; — 0? Then we recover the soft limit for which we want to
use our Eikonal approximation. If we simply included both we would double count, since this soft
limit is present in the collinear limit too. We therefore have to sort out the ordering of the limits
such that we can separate the collinear and soft limits accordingly. This is illustrated in Figure 11,
along either one of the axis the collinear approximation can be used, whereas at the origin the soft
approximation should be employed.

At NLO this is a manageable task and the singularities can be just about handled using the
prescription outlined above (truncating the collinear near the origin to avoid overlap with the soft
region) [27, 28]. However when we go up to NNLO we will find a huge increase in complexity,
because now we can have two unresolved partons. This means that we get many different types
of singularities which overlap with one another. Dealing with these singularities in a clever way to
obtain an approximate matrix element in the unresolved region is an extremely non-trivial task.

4.2 N-jettiness slicing at NNLO

For the reasons discussed above phase space slicing fell out of favor over the last 20 years in
favor of subtraction, which we’ll discuss shortly. However recently there has been something of a
renaissance of these methods at NNLO [24, 25] due to some clever factorization theorems for the
below cut bit. One recent development is the idea of using the event shape variable N-jettiness [29]
to classify the above and below cut contributions. Therefore in order to discuss this method I first
have to introduce the N-jettiness event shape variable.

As a concrete example lets consider the production of a 1-jet final state at NNLO. We have
various possible partonic configurations that can contribute at this order. Firstly we have LO phase
space in which there are three partons (+ whatever EW stuff we made). Secondly we have a phase
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Figure 12: A representation of an event with a small value of 77, all three final state partonic momenta
reside close to the jet-axis defined ¢ resulting in a small value of f 7] (and double unresolved limits).

space with four partons (corresponding for instance to the mixed real-virtual corrections), finally
we have the option of making 5 partons in the final state (which comes from the real-real corrections
in which two tree-level amplitudes interfere with one-another). Lets focus on the double-real phase
space as its the most complicated. Now we are interested in the jet-observable so we have to cluster
our momentum using our favorite infra-red safe jet algorithm. After this we have 3 possibilities
corresponding to:

1. all three partons are clustered into the same jet.

2. two partons cluster into one jet and another parton does not (this last parton could make a
second jet if hard enough, but there is no mandate for it to do so)

3. all three partons are separated and no partons cluster together.

Now we think about the potential IR problems in each region. In region 1) we have lots of IR
problems, there are many possible double unresolved limits here corresponding to collinear (for
example all three partons travel in the same direction), and double soft limits etc. Region 2) has
less types of singularities since the only truly nasty one is the double soft, or one soft and one
collinear. Finally in region 3 no collinear singularities are possible, so we just worry about soft
limits.

We want some way of knowing when these different regions develop problems, and it is here
that the N-jettiness observable comes into play. For example, consider region 3), if all three partons
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are hard enough to form jets, then soft singularities are forbidden. If two jets are present we
can have one soft parton, but not two. Finally when there is only one-jet we can have two soft
partons. So clearly how “1-jet" like the event is can be utilized to discriminate between the sort of
singularities present.

We need a more quantitive version of this statement, so we introduce the N-jettiness event
shape [29]. We take our set of M final state partonic (unclustered) momentum { p;} and our clus-
tered jets g;. Now we want to compute how 1-jetty the event is, so we take the hardest jet direction
after clustering. The 1-jettiness for a single parton p; is given by

. qi-Pj
Ti(p:) = 4.16
1(py) ig}g}( 0, > (4.16)
where a and b correspond to the initial state partons at the LHC. Q; is an energy scale associated
with the jet which we typically take to be Q; = 2E;. The total jettiness of the event is given by the
sum over the M partons

y - : qi- Pk
%zg%(m):klif}f&( 0 > 4.17)

Our claim is that .77 = 0 corresponds to the double unresolved limit of our double-real phase space.
To see this note that the LO phase space has ¢; = p; so 97 = 0. Now consider the configuration at
NNLO shown in Figure 4.2. Three partons cluster together to form a single jet, since g; overlaps
closely with p; + p» + p3 all of the individual products entering our sum are small. As we approach
a double unresolved limit .77 — 0, for example consider a triple collinear limit in which all three
partons become parallel to g; and .77 — 0. Now consider the second example, illustrated in Fig. 13,
in which we have a partonic emission p3 which is hard enough to put us away from the soft limit,
q1 is formed out of p; and p, here. Now there is potential for g; - p; or g1 - p2 to go to zero, but not
q1 - p3 (by construction since we assumed that p3 was hard enough). The only possibility which
causes us concern is a limit in which p3 becomes soft, but not clustered. Here though we recover
1 — 0 as expected. So we see that .7; = 0 contains all of the double-unresolved limits, and .77 > 0
can have at most a single unresolved limit. The .7; > 0 region thus corresponds to the integration
over non-zero 0 in our toy model, and can be treated as a regular NLO calculation.

We still need to form a suitable approximation for 7] ~ 0 so that we can use our slicing
procedure. It is here that the magic of SCET comes into play. I dont have time to introduce Soft-
Collinear-Effective field Theory [33, 34, 35, 36, 37] in these lectures, but we can use two of the
main features of the theory to help us here. 1) It nicely separates the soft and collinear regions
using the tools of EFT (see your EFT lectures). 2) It provides a factorization theorem which can be
employed at low Zy. The factorziation theorem states that for small values of 7y less than some
cut 75", We can write the cross section as a convolution over the following terms

gcut N
o(%,<91§“‘):/0 ! dINB, @B, @ SOH @[ [Ji+ O (™). (4.18)
i=1

Here B; are the beam functions [32], which describe collinear initial state radiation. S is a soft
function [103, 104] which describes soft radiation and J; are jet functions [105, 106] that model
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A%ompare

Figure 13: A representation of an event with a larger value of 77, here a wide angle emission forces the
invariant p3 - g1 away from zero, accordingly here only a single unresolved limit is possible.

final state collinear radiation. They are all process independent (although the soft function is a
matrix in color space and thus depends on the number and nature of colored scatters). H is a
process dependent hard function, which (after suitable definition) is IR finite. This below cut bit
then plays the role of logd - V,F/ in our toy model. Here however the fourth powers of the log
occur.

The important feature in any of these slicing calculations is thus an ability to show a lack of
sensitivity to your cut-off. This is shown for several color singlet process in Figure 14, which is
taken from MCFM [42]. N-jettiness slicing has become a popular method for NNLO calculations,
and has been applied to multiple LHC processes at NNLO [38, 39, 40, 41, 42, 107, 108, 109]. For
color singlet production, Q7 slicing [110] has also been widely used [111, 45, 112, 56, 20, 55, 113].

4.2.1 Subtraction methods

We can overcome all of the issues described above if instead of approximating the matrix
element we simply add in a subtraction term

1
—R,(0)F’ / dx (4.19)
0

xlte

Of course we cannot add terms to the cross section with impunity. If we add it in somewhere we
better take it away somewhere else.

V, 1 dx U dx U dx
(1)_l J J Ihesdd J _ J
ol = L+ Ry(O)F; /0 e /O S RAEL ()~ R O)F; /0 e @)
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Figure 14: Slicing dependence at NNLO for known processes taken from Ref. [42]
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Now we integrate the first one, and re-package the second,

V.,  R,(0 I d
o) — ( _ U) B+ [ RO (0 = RO “21)

€ £
Lets look at the second term, as x — 0.

an(x)Fer+l (x)

lim[R, (x)F., | (x) — R,(0)F)] = R,(0)F] (0) + o y

n
x—0

x—R,(0)F! = 0(x) (4.22)
and as such our integral is finite. Therefore we no longer need € as a regulating parameter and we
can simply put € = 0 in the second integral. Note again the essential role of the infra-red safety
of the measurement function FnJ 1 (x) in this argument. Again our KLN theorem for the toy model
requires that

R,(0) =V, (4.23)
Such that
d
oll) = / %[Rn (X)EL (x) = V,F] (4.24)
0

Clearly the subtraction method has several advantages over the slicing method outlined previously.
Note that a large cancellation still has to take place (between the subtraction term and the real
matrix element in the region of x = 0), but if the code is efficiently written this can be performed
in such a manner as to result in a stable code (since the cancellation happens point-wise under the
integral and not inclusively). The complexity in subtraction methods is the subtractions themselves.
Our toy model is not sufficient to demonstrate exactly these complexities.

In general we have to generate a mapping between the real emission phase space and the LO
phase space, such that momentum in the LO phase space is physical and factorization can be used.
Clearly we cant re-map two particles (emitter and emitted) in such a way as to generate an on-shell
combination of the two. We therefore use three particles, (emitter, emitted and spectator) and our
mapping thus alters all three such that the combination of emitter and emitted is on-shell and so is
the recoiling spectator. We call this a dipole transformation, and the most widespread subtraction
at NLO is due to Catani and Seymour [30]. Hence the name Catani-Seymour dipoles. However
other schemes exist [114, 115] and are used in a variety of different codes, at the end of the day the
choice is somewhat arbitrary, any functions which fulfill the requirements above will satisfactorily
perform as subtractions.

A further challenge is to ensure that the dipoles can be analytically integrated to cancel the
poles in € too. At NNLO this is a huge challenge, and the development of a subtraction scheme for
LHC calculations was an epic piece of work spread over many years (but now yielding results). The
most utilized method at NNLO is antenna subtraction [21], which has successfully been applied to
a wide number of LHC processes at NNLO [51, 52, 53, 54, 116, 117, 118].

5. Putting it all together, an example of H — bb at NLO

Lets work all this through in a more meaningful example, we’ll look at the decay of a Higgs
boson into two b quarks at NLO. This process has been studied both at NNLO and even N°LO, here
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we’ll simply look at the application of a subtraction in action at NLO. Its a useful process since we
can see the basic points without worrying about initial state complexities (PDFs) or application of
a measurement function (since the process is finite at LO). We therefore simply take F/ = 1 and
look at the application of a counter term in a simple setting. Specifically we consider

H(pu) — b(p1) +b(p2) 5.1

We’ll consider the quarks as massless aside from the Yukawa coupling to the Higgs boson yg. The
LO process for an on-shell Higgs boson is then simply

[t OF = 2Ny (52)
To obtain the partial width for example, we would integrate this matrix element over the following

two-body phase space (keeping the d dependence for now)

dd _ A1 sy A2 st 0y 5.3
2(p1,p2) = W (P1)W (p2)(27)“ 8 (pu — p1— p2) (5.3)

At NLO we will need the real emission process

H(pu) — b(p1)+b(p2) +8(p3) (5.4)
If we work in d-dimensions then the matrix element is proportional to?

O s 11 o . 11
2 2my N, (27)*Cr By (x) (m + ) T O (21)2Cr B,y (x) < +—(.5)

0) 2
20 2=
Hbb,
8 21 523 S13 823

where x = s1/m2, and the splitting function is given by

qu(z): <1+Z2 _8(1—Z)> (5.6)

1—z

This amplitude is integrated over the three-body phase space

d? a?
Gy TP a0 () (28 iy — 1 — p2 — YD)

(+)( 2) i

P1

dp
d®5(p1,p2,p3) = 2n)aT

Lets see how we handle this calculation with a dipole subtraction. We have two dipole configu-
rations, one which corresponds to p3 being emitted from p; and p, the spectator, and a second
dipole with p; and p, swapped. We need to define a mapping back to our LO phase space, so we
introduce the following momentum

~ Y1
R R e ] (5.8)
-N
. 1
= b (59)
-
where y; is defined as
SEN | R (5.10)

= =
siz+s3+sis my

2I've factored out (u2e” /47m)¢ into the overall normalization
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We see that the 0 < y; < 1 defines the range of y;. You can see by inserting this value that both p;3
and p, are on-shell, and that p; + p» + p3 = p13 + p2. We will also need the following variable z;

S12
71 =
823+ 812

(5.11)

Again the possible range of values of z; are 0 < z; < 1. We then construct the following (final-final)
Catani-Seymour Dipole [30]

1 2
Dpyp=————F+——(1—z1)—€(1l—2 5.12
R (e = BU(EEORT ) 6.12)
The second dipole is obtained by swapping 1 <> 2 everywhere. Our bold claim is then that the
following combination

% =21.4OP2r)? [ﬁqq(x) (1 - 1) +Di3; +D23,1] (5.13)
2n $13 523

is finite as either 513 — 0 or so3 — 0 or 513 and s>3 — 0 simultaneously. We note that a more general
application would apply different measurement functions to the real matrix element and dipoles,
we suppressed the measurement function completely in this example, but in general the IR safety
requirements will always force the real phase space’s measurement function onto the LO (dipole)
measurement function, in a singular limit. So checking the above formula is good enough to test
the cancellation of soft and collinear singularities. In order to show this we define

L 1 1
K (512,523,513) = |Ppg(x) | — +— | + D132+ D23 (5.14)
S13 53

Inserting our definitions of z; and y; (and y, and z,) into the above gives (after some simplification,
a handy job for Mathematica)

S12(S12+m12{)

R (s12,523,513) = (1 — € (5.15)
( )= )(512+S13)(S12+S23)m%1
This function is manifestly behaved in all limits, for example
2(l—¢) 2(1—€)(2s12+ 523)
%' 0,0) = %' 0) = 5.16
(5127 ) ) S12 ) (S]27S23, ) (S]2+S23)2 ( )

and #'(s12,0,513) can be readily obtained by symmetry.

5.1 Integrating the dipoles

We have to integrate our dipoles over the unresolved phase space to obtain an analytic expres-
sion for the integrated dipoles, which can be used to cancel the remaining poles in the virtual. We
can write the three-body phase space given by eq. 5.7 in terms of the two-body phase space for the
p momentum and integration over our dipole variable z; and y;.

d®3(p1, p2, p3) — dP2(p13, p2)[dpi(p13, P2)] (5.17)
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where

mi;ZS dQ(d*3)

Wmdmdyl(m(l—Z1))_8(1—y1)1_28y1_8 (5.18)

[dpi(p13,P2)] =

where dQ“73 is the element of solid angle given by

a3 27
/dQ 777[8]_—‘(1—8) (5.19)

We can use this phase space parametrization to define an integrate dipole

D130 = /[dpi(ﬁm,ﬁz)](—l)m,z) (5.20)

Or, supressing some overall normalization for clarity

1 1
nae [ daa(i-20) [ -y ~(1+a) - el -z

( 2
1=z (L=y)

Putting this into Mathematica we compute the following result

B(l—¢) /1 1 3+¢
D13, o< m (82 + 82(1—38)) (5.22)

Expanding out the series we find

2 i+i+5—”—2+ﬁ(s) (5.23)
13,2 e 2¢e 2 ’

Next we turn our attention to the virtual piece, normalized to the LO (and a factor of Cr such
that its in the same units as above) we find that

4
=B ——+D 24
V=5, (D—4+ ) (5.24)

where B> 1 is the bubble basis integral, expanded in € by
1
By = E+2+ﬁ(8) (5.25)

Here we have assumed that u? = m% = s1».

Expanding our result our we find
2
V=-5+(6-2)+0() (5.26)

where {, = 7> /6. Thus our combined virtual - integrated dipole terms are, again working in units
of the LO (and technically evaluating o at ,u2 = m%i we find

2 1 3 w?
V+ D132+ D3 82+(Cz )+ <£2+2£+5 2) (5.27)
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Or

3 572
T=———+8 5.28
=T 6 + (5.28)

Oh dear, this doesnt look very finite. However we have not performed any renormalization of any
UV divergences. Since this the first time o, occurs in the expansion we dont have to renormalize
that, on the other hand the Yukawa coupling requires renormalization, which in our massless theory
in the MS scheme provides proceeds as follows,

o, 3C
VB =y, [1—‘F+..} (5.29)

4w €
Since our process comes in at y% the corresponding correction is (in units of Cra/(27) as our
renormalized piece is

T'=T->-=8-"+ 5.30
- (5.30)

and is finite.

6. Conclusions

These lectures notes have covered a slightly eclectic range of topics related to precision cal-
culations at the LHC. The basic idea was to provide a brief overview of methods used in fixed
order computations at NLO and NNLO, such that the reader could delve deeper into any topic
which took their interest. Precision physics has and will continue to, play a vital role in the ongo-
ing successfully running of the LHC. It is vital that we understand the SM to such a degree as to
reliably interpret any suspected deviation from its predictions observed experimentally. Over the
next decade (and at any future colliders) the study of the Higgs boson differentially will require
astounding precision from the theoretical community to allow us to probe the nature of the Higgs
and the mysteries of electroweak symmetry breaking. These notes provided an introduction to
precision physics, hopefully placing an emphasis on important topics which are not normally in-
cluded in traditional graduate lectures on Quantum Field Theory. We investigated the management
of multi-particle scattering amplitudes through color and helicity decompositions. We toured the
mathematical properties of tree- and loop-level amplitudes, learning about some of the develop-
ments in on-shell methods. We discussed the problems associated with IR singularities at higher
orders, and presented an overview of how to tackle them in a Monte Carlo implementation using
either slicing methods, or subtraction. Finally we presented an application of subtraction methods
to a real process, the decay of a Higgs boson to bb at NLO.
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