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In recent years, the combination of advanced quantum Monte Carlo (QMC) methods and local
interactions derived from chiral effective field theory (EFT) has been shown to provide a versa-
tile and systematic approach to nuclear systems. Calculations at next-to-next-to-leading order in
chiral EFT have lead to fascinating results for nuclei and nucleonic matter. On the one hand,
ground-state properties of nuclei are well reproduced up to A ≤ 16, even though these potentials
have been fit to nucleon-nucleon scattering and few-body observables only. On the other hand, a
reasonable description of neutron-matter properties emerges. While regulator functions applied to
two- and three-nucleon forces are a necessary ingredient in these many-body calculations, the use
of local regulators leads to a substantial residual regulator and cutoff dependence that increases
current theoretical uncertainties. In this contribution, we review local chiral interactions, their
applications, and QMC results for nuclei and neutron matter. In addition, we address regulator
issues for such potentials and present a possible path forward.
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1. Introduction

Predicting the emergence of nuclear properties and structure from first principles is a formidable
task. A fundamental question is whether it is possible to describe nuclei and their global proper-
ties, e.g., binding energies, radii, transitions, and reactions, from microscopic nuclear Hamiltonians
fit only to nucleon-nucleon (NN) scattering data and few-body observables, while simultaneously
predicting properties of matter, including the equation of state (EOS) and the properties of neutron
stars (NS). Despite advanced efforts, definitive answers are not yet available [1–9].

In the last years, there has been considerable progress in the description of nuclear systems
due to the development of precision nuclear interactions and advances in ab-initio methods to solve
the nuclear many-body problem. However, the predictions for nuclear observables are still limited
by our insufficient understanding of the underlying nuclear forces and by our ability to reliably
calculate strongly correlated systems, i.e., by approximations in the employed many-body meth-
ods. In Fig. 1, we show three examples of uncertainties in calculations of nuclear structure [10],
symmetric nuclear matter [11], and the mass-radius relation of neutron stars [12]. The three cal-
culations are based on many-body perturbation theory (MBPT) with chiral effective field theory
(EFT) interactions. As it can be seen from the first two panels, current many-body uncertainties are
much smaller than the uncertainty stemming from the nuclear Hamiltonian.

To explore the means of improving current uncertainties, it is desirable to have a consistent
approach to nuclear systems ranging from nuclei to nucleonic matter, i.e., an approach that uses the
same advanced many-body methods and the same systematic nuclear Hamiltonians and can provide
reliable theoretical uncertainties. In this contribution, we discuss quantum Monte Carlo (QMC)
results for nuclei up to A = 16 and neutron matter, obtained by employing recently developed local
chiral interactions. These interactions include consistent two- and three-nucleon forces up to next-
to-next-to-leading-order (N2LO), and have been fit to NN scattering and few-body observables
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Figure 1: Uncertainties in calculations of three nuclear systems. Left panel: Ground-state energies in the
isotopic chains of Mg and Cl at second and third order in MBPT. The bands at each order are computed
for five different chiral Hamiltonians [10]. Middle panel: Uncertainty band for the energy per particle of
symmetric nuclear matter using MBPT. The colored and dashed bands illustrate the many-body uncertainty,
while the individual bands are spanned by six chiral Hamiltonians [11]. Right panel: Uncertainty band for
the mass-radius relation of neutron stars based on MBPT calculations of pure neutron matter and a polytropic
high-density extension [12].
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probing the physics of light nuclei, with particular attention to T = 3/2 physics. In addition, these
interactions allow to estimate systematic uncertainties for nuclear systems. Our results show that
such local chiral interactions give a very good description of the ground-state properties of nuclei
(at least) up to 16O, while providing an EOS of pure neutron matter compatible with astrophysical
observations of neutron stars. This is an important step toward a predictive understanding of nuclei
and neutron-star properties grounded in high-quality nuclear forces and ab-initio theory.

Our contribution is structured as follows. In Section 2 we briefly review QMC methods and the
employed local chiral interactions. We present results for nuclei and neutron matter in Section 3.
In Section 4 we address issues with local chiral interactions and discuss possible improvements.
We summarize our work in Section 5.

2. Method and Hamiltonian

2.1 Quantum Monte Carlo methods

The solution of the many-body Schrödinger equation describing a system of interacting baryons
is challenging because of the nonperturbative nature and the strong spin/isospin-dependence of re-
alistic nuclear interactions. QMC methods provide a powerful tool to tackle the nuclear many-body
problem in a nonperturbative fashion. They have proven to be remarkably successful in describing
the properties of strongly correlated fermions in a large variety of physical conditions [5].

In this contribution we present results obtained using the auxiliary field diffusion Monte Carlo
(AFDMC) method [13], a stochastic technique developed to solve the many-body ground state
of strongly correlated systems, such as nuclei and nuclear matter. The main idea is to evolve a
many-body wave function in imaginary-time:

Ψ(τ) = e−Hτ
ΨV , (2.1)

where H is the Hamiltonian of the system and ΨV is a variational state

|ΨV 〉=
[
FC +F2 +F3

]
|Φ〉 , (2.2)

where FC accounts for all the spin/isospin-independent correlations, and F2 and F3 are linear
spin/isospin two- and three-body correlations as described in Ref. [5]. For nuclei, the term |Φ〉
is taken to be a shell-model-like state with total angular momentum J, total isospin T , and parity
π . Its wave function consists of a sum of Slater determinants D constructed using single-particle
orbitals:

〈RS|Φ〉(Jπ ,T ) = ∑
n

cn

(
∑D

{
φα(ri,si)

})
(Jπ ,T )

, (2.3)

where ri are the spatial coordinates of the nucleons and si represent their spins. Each single particle
orbital φα consists of a radial function ϕ(r) coupled to the spin and isospin states. The determinants
are coupled with Clebsch-Gordan coefficients to total J and T , and the cn are variational parameters
multiplying different components having the same quantum numbers. The radial functions ϕ(r)
are obtained by solving for the eigenfunctions of a Wood-Saxon well. For infinite matter, the term
|Φ〉 is built from a Slater determinant of plane waves with momenta ki quantized in a finite box
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whose volume is determined by the chosen density and number of particles involved. The infinite
system is then realized by applying periodic boundary conditions [14]. All the parameters of ΨV

are chosen by minimizing the variational energy as described in Ref. [15].
After the optimization of ΨV , the trial wave function is propagated in imaginary time in order

to remove all the low excited states that are still present in the variational ansatz, projecting the
system onto the true ground state in the limit of τ → ∞. The evolution in imaginary-time is per-
formed by sampling configurations of the system using Monte Carlo techniques. In more detail,
in the AFDMC method both spatial coordinates and spin/isosospin configurations are sampled, the
latter via a Hubbard-Stratonovich transformation. This is at variance with other imaginary time
projection algorithms, such as the Green’s function Monte Carlo (GFMC) method, where only the
spatial degrees of freedom are sampled, and the propagation is carried out over all the possible
good spin/isospin states of the system. The sign problem, that affects most of QMC algorithms
for nuclear physics, is initially suppressed by evolving the wave function in imaginary time using
the constrained-path approximation [16]. An unconstrained evolution is then performed until the
sign-problem dominates and the variance of the results becomes severely large. Finally, expecta-
tion values are evaluated over the sampled configurations to compute the relevant observables. For
more details see, for instance, Refs. [5, 17–20].

In QMC calculations, nuclear systems are typically described as a collection of point-like
particles of mass mN interacting via two- and three-body forces according to the nonrelativistic
Hamiltonian

H =− h̄2

2mN
∑

i
∇

2
i +∑

i< j
vi j + ∑

i< j<k
Vi jk, (2.4)

where, in nuclei, the two-body interaction vi j also includes the Coulomb force. Historically, QMC
methods have made use of phenomenological nuclear interactions, such as the Argonne v18 (AV18)
NN potential combined with Urbana/Illinois models for the three-nucleon (3N) forces [5]. By
construction, these potentials are nearly local, meaning that the dominant parts of the interaction
depend only on the relative distance r, spin, and isospin of the interacting nucleons, and not upon
any derivatives. This feature is crucial for the application of QMC algorithms to the study of
nuclear systems. In the last few years, with the development of local chiral interactions, a larger
number of Hamiltonians has become accessible to QMC methods, providing new opportunities for
nuclear structure and neutron-matter calculations.

2.2 Local chiral interactions

Chiral NN interactions are typically derived in momentum space and depend on two momen-
tum scales: the average momentum of the incoming particles p and the average momentum of the
outgoing particles p′. These momentum scales can be rewritten in terms of the momentum transfer
q = p′− p and the momentum transfer in the exchange channel, k = (p+ p′)/2. Upon Fourier
transformation, all dependencies on q transform to dependencies on the interparticle distance r,
while dependencies on k lead to derivatives and nonlocalities.

The typical sources of nonlocalities are: (i) common regulator functions of the form f (p) =
exp
(
−(p/Λ)2n

)
for both p and p′, where Λ is the cutoff scale and n is an integer number, and

3
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(ii) k-dependent operators in the potentials. In general, chiral interactions are written in terms of
pion-exchange and contact contributions,

V (q,k) =Vcont(q,k) · fshort(q,k)+Vπ(q,k) · flong(q,k) , (2.5)

where the functions fα denote the short- and long-range regulator functions. In order to remove the
first source of nonlocality, we construct chiral interactions with local regulators fα(q). In particular,
we use the r-dependent coordinate-space regulator functions

flong(r) =
(

1− e−
(

r
R0

)n1
)n2

, (2.6)

fshort(r) =
n

4π R3
0 Γ
(3

n

) e−
(

r
R0

)n

. (2.7)

For the second source of nonlocalities, we first stress that pion-exchange interactions are local
up to N2LO: V N2LO

π (q,k)≡V N2LO
π (q). In coordinate space, these interactions can be written in the

form

Vπ(r) =VC(r)+WC(r)τττ1 · τττ2 +
(
VS(r)+WS(r)τττ1 · τττ2

)
σσσ1 ·σσσ2 +

(
VT (r)+WT (r)τττ1 · τττ2

)
S12

(2.8)

where S12 = 3σσσ1 · r̂ σσσ2 · r̂−σσσ1 ·σσσ2 is the tensor operator. Applying a local regulator to Vπ(r)
keeps its contributions local, and the only remaining source of nonlocalities is Vcont(q,k). To
remove those, we make use of ambiguities in the general operator basis of the contact operators at
a certain chiral order [21, 22]. For example, at leading order (LO) in the chiral expansion, the most
general operator basis is given by

V LO
cont(q,k) =V LO

cont = α11+α2 σσσ1 ·σσσ2 +α3 τττ1 · τττ2 +α4 σσσ1 ·σσσ2 τττ1 · τττ2 , (2.9)

where the αi are the LO low-energy couplings (LECs). However, due to the Pauli principle, only
two out these four operators are linearly independent, as it can be seen by applying the antisym-
metrization operator to the potential; see also Sec. 4.1. Therefore, one can choose any pair out of
these four operators for the LO contact potential, which leads to ambiguities in the contact interac-
tions similar to Fierz ambiguities [23]. A common choice is given by the first two operators,

V LO
cont =CS1+CT σσσ1 ·σσσ2 . (2.10)

At next-to-leading order (NLO), the contact interaction is momentum-dependent, and it is
given by

V NLO
cont (q,k) =γ1 q2 + γ2 q2

σσσ1 ·σσσ2 + γ3 q2
τττ1 · τττ2 + γ4 q2

σσσ1 ·σσσ2τττ1 · τττ2 + γ5 k2 + γ6 k2
σσσ1 ·σσσ2

+γ7 k2
τττ1 · τττ2 + γ8 k2

σσσ1 ·σσσ2τττ1 · τττ2 + γ9 (σσσ1 +σσσ2)(q×k)+ γ10 (σσσ1 +σσσ2)(q×k)τττ1 · τττ2

+γ11(σσσ1 ·q)(σσσ2 ·q)+ γ12(σσσ1 ·q)(σσσ2 ·q)τττ1 · τττ2 + γ13(σσσ1 ·k)(σσσ2 ·k)
+γ14(σσσ1 ·k)(σσσ2 ·k)τττ1 · τττ2 , (2.11)

where the γi are again a set of LECs. Using the same arguments as before, we choose all local
contact interactions ∝ q2, as well as the nonlocal spin-orbit interaction, that can, however, be treated
within QMC methods.
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At N2LO, the short-range operator structure of the potential is the same as that at NLO, with
no additional momentum dependences. The result is then a local chiral interaction up to N2LO that
can be efficiently used in QMC methods. The appearing LECs, that accompany all of the short-
range operators, have been fit to reproduce NN scattering phase shifts, and we refer to Ref. [22] for
details.

In addition to NN interactions, 3N forces also naturally appear at N2LO. These can be grouped
into three topologies: (i) a 3N two-pion exchange (TPE) interaction, labeled VC, which depends on
the NN LECs ci; (ii) a one-pion-exchange–contact interaction, labeled VD, which depends on a
true 3N coupling cD; (iii) a 3N contact interaction VE , which depends on a second true 3N LEC
cE . The TPE interaction consists of an S-wave and P-wave contributions, where the latter is the
well-known Fujita-Miyazawa interaction. For the 3N contact term VE , the most general operator
basis consists of six different operators which reduce to only one linearly-independent term upon
antisymmetrization; see Sec. 4.1. However, regulator artifacts, which we discuss later, lead to
ambiguities. We will study the impact of these regulator artifacts by investigating three different
operator choices, namely Eτ , E1, and EP; see Sec. 4.1 and Refs. [18, 24, 25] for more details. The
leading 3N interactions at N2LO are local, if local regulator functions with 3N cutoff R3N = R0

are employed, and they can be easily implemented in QMC methods [26]. For the local chiral
interactions used in this work, the unknown 3N LECs cD and cE have been fit to reproduce the
binding energy of 4He as well as the P-wave n-α elastic scattering phase shifts using the GFMC
method [18, 24], see Fig. 2.
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Figure 2: Left panel: P-wave n-α elastic scattering phase shifts for local chiral interactions at N2LO [18]
compared to an R-matrix analysis of experimental data [27]. Right panel: LECs cD and cE for different
coordinate-space cutoffs and parametrizations of the 3N contact term VE [18].

3. Results

Recent advances made in accurate QMC methods and their combination with interactions
derived from chiral EFT have provided many new insights in low-energy nuclear theory [20]. A re-
markable result is the possibility to describe nuclei with A≤ 16 and their global properties from mi-
croscopic nuclear Hamiltonians constructed to reproduce only few-body observables, while simul-
taneously predicting properties of neutron stars compatible with astrophysical observations [24].
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In the next two sections, we summarize the nuclear-structure results for light- and medium-mass
nuclei, and the predictions for neutron matter.

3.1 Nuclei

We have employed local chiral potentials up to N2LO in AFDMC calculations of ground-
state properties of nuclei up to 16O [17, 18]. In Fig. 3 we show the results for the binding energy
(left panel) and the charge radius (right panel) for different systems for the coordinate-space cutoff
R0 = 1.0fm (harder interaction). AFDMC predictions are shown for each order of the chiral expan-
sion (upward brown triangle for LO, downward blue triangle for NLO, orange and red circles for
N2LO), compared to experimental results (green stars). At N2LO, results are obtained for different
operator structures of the 3N contact term VE , namely Eτ (solid orange circles) and E1 (empty red
circles). Smaller error bars indicate the statistical Monte Carlo uncertainty, while larger error bars
are the uncertainties coming from the truncation of the chiral expansion according to the EKM pre-
scription [28]. Fig. 3 summarizes several original contributions of this study: (i) AFDMC is used
for the first time to calculate properties of closed- and open-shell nuclei up to A = 16 using realistic
two- and three-body potentials; (ii) a complete quantification of all uncertainties associated to the
employed Hamiltonian and nuclear many-body method is provided; (iii) the computed observables
manifest a good order-by-order convergence pattern in the chiral expansion; (iv) both energies and
radii at N2LO are well reproduced up to A = 16, even though only few-body physics has been used
to fit the employed potentials; (v) different three-body operator structures at N2LO provide the
same description of the analyzed observables, i.e., regulator artifacts coming from the violation of
the Fierz-rearrangement freedom in the selection of local contact operators (cf. Sec. 4.1) are small
for this cutoff scale. Similar conclusions are found for the cutoff R0 = 1.2fm (softer interaction)
up to A = 6. Peculiar is the case of 16O for such a softer potential, for which the nucleus is signif-
icantly overbound and very compact. In addition, regulator artifacts are much larger in this case.
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Figure 3: Ground state properties for nuclei with 3 ≤ A ≤ 16 using local chiral potentials [17, 18]. Left
panel: Binding energy per nucleon. Right panel: Charge radius. Results at different order of the chiral
expansion and for different parametrizations of the 3N contact term VE are shown for the coordinate-space
cutoff R0 = 1.0fm. Smaller error bars indicate the statistical Monte Carlo uncertainty, while larger error bars
are the uncertainties coming from the truncation of the chiral expansion.
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logical potentials [29, 30]. Experimental data are based on Refs. [31–34]. Left panel: 12C. Right panel: 16O.

See Refs. [17, 18] for a complete discussion.
In Fig. 4 we present the results for the charge form factor in 12C (left panel) and 16O (right

panel). Colored lines and bands refer to results employing local chiral interactions at N2LO, black
triangles are QMC results for phenomenological potentials, and green stars are the experimental
data. Within the estimated uncertainties (both statistical and systematic), the harder local chiral
potential (R0 = 1.0fm) provides an excellent description of the charge form factor in both systems.
Different is the case of the softer interaction (R0 = 1.2fm) in 16O, for which the first diffrac-
tion minimum occurs at a significantly higher momentum than experimentally observed. This is,
however, consistent with the 16O overbinding and compactness obtained for this interaction (see
Refs. [17, 18] for more details).

QMC methods have also been used to study short range correlation (SRC) effects as emerg-
ing from the underlying microscopic Hamiltonian. We have performed a variational Monte Carlo
study of single-nucleon momentum distributions in A≤ 16 nuclei [19]. Fig. 5 shows the results for
different nuclei and for different interaction schemes. In the left panel, chiral results at N2LO for
coordinate-space cutoff R0 = 1.0fm (solid symbols) are compared to results for phenomenologi-
cal potentials (dashed lines) for A = 4,12,16. In the right panel, results for 4He (blue triangles)
and 16O (red circles) are compared for different local chiral interactions at N2LO: solid symbols
for R0 = 1.0fm, empty symbols for R0 = 1.2fm. We find that the single-nucleon momentum dis-
tribution manifests the expected universal behavior at high momentum, i.e., the independence of
the high-momentum components upon the specific nucleus. However, such a universal behavior
appears to be scheme dependent, i.e., it depends on the choice of the employed potential since it is
determined by the short-range structure of the selected Hamiltonian. See Ref. [19] for a complete
discussion. The prospect of directly probing nucleon momentum distributions in light nuclei via
(e,e′p) measurements has also been explored from a theoretical point of view within our QMC
framework [35].

In addition to single-nucleon momentum distribution, we have used variational Monte Carlo
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Figure 5: Proton momentum distributions for local chiral interactions at N2LO [19]. Left panel: 4He, 12C,
and 16O (solid symbols) compared to phenomenological potentials (dashed lines). The deuteron momentum
distributions are also shown. Right panel: 4He and 16O, solid (empty) symbols for the Eτ (E1) parametriza-
tion of the 3N contact term with cutoff R0 = 1.0fm (R0 = 1.2fm).

techniques to calculate two-nucleon momentum distributions in A = 4,12,16 nuclei [19]. In the
left panel of Fig. 6, we present the proton-proton (red circles) and proton-neutron (blues triangles)
momentum distributions in 12C as a function of both the relative momentum q of the pair and the
center of mass momentum Q. Results are shown for the N2LO Eτ local chiral potential with cutoff
R0 = 1.0fm. At Q = 0 pn pairs show a deuteronlike distribution, with a change of slope around
q = 1.5fm−1, as found for phenomenological potentials [39]. The pp distribution presents instead
a node in this region, located at approximately 2fm−1. The same qualitative conclusions hold for
different systems and different interaction schemes. It follows that ρNN(q,Q = 0) is larger for pn
pairs compared to pp pairs, in particular for relative momenta in the range q≈ 1.5−2.5fm−1. This
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Figure 6: Results extracted from the analysis of two-nucleon momentum distributions for the N2LO Eτ

potential with cutoff R0 = 1.0fm. Left panel: Distributions in 12C, blue triangles for pn pairs, red circles for
pp pairs [19]. Right panel: pp to pn pairs ratio in A= 4,12,16 nuclei as a function of the relative momentum
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8



P
o
S
(
C
D
2
0
1
8
)
1
0
0

Local chiral EFT potentials D. Lonardoni and I. Tews

is consistent with the observation of large differences in the pp and pn distributions at moderate
values of the relative momentum extracted from (e,e′pN) experiments [36–38]. Moreover, even
though momentum distributions themselves are model dependent, the ratio of pp to pn back-to-
back pairs appears to be largely model independent and matches the available experimental infor-
mation extracted from (e,e′pN) experiments from light to heavy nuclei (see right panel of Fig. 6).

Another interesting opportunity arising from the use of QMC methods with EFT techniques
is the possibility of naturally explaining the empirical linear relationship between the slope of the
EMC effect in deep inelastic scattering and the SRC scaling factors a2 in quasi-elastic lepton-
nucleus scattering, allowing us to calculate and predict SRC scaling factors from ab-initio low-
energy nuclear theory [40, 41]. We have performed diffusion Monte Carlo calculations of nuclei
from A = 2 to A = 40 using both phenomenological and local chiral interactions and deriving a2

values from the ratio of two-nucleon densities in coordinate space. Results show that, even though
two-nucleon densities are scheme and scale dependent quantities, their ratio, as predicted from
EFT up to higher-order corrections, is scheme and scale independent and in good agreement with
available experimental data [41].

3.2 Neutron Matter

The AFDMC method has also been extensively used to study pure neutron systems, includ-
ing neutron drops and pure neutron matter (PNM) [14, 42–44]. In this section, we focus on the
results for PNM obtained by employing the same local chiral interactions described in the previous
sections.

In Fig. 7, we show the equation of state of PNM, i.e., the energy per particle as a function of the
baryon density n, as obtained using local chiral interactions at N2LO with coordinate-space cutoff
R0 = 1.0fm. In particular, three uncertainty bands are shown. While each band is estimated accord-
ing to the EKM prescription [28] using the average momentum in a Fermi gas, kavg =

√
3/5kF , as

the characteristic momentum scale, the three different bands explore the uncertainty due to regula-
tor artifacts stemming from the 3N contact interaction VE . Typically, only the 3N TPE interaction
VC contributes to PNM, as the shorter-range topologies VE and VD vanish in T = 3/2 or S = 3/2
systems due to the Pauli principle and their spin-structure [45]. However, local regulators smear
out these delta-like contact interactions over a finite volume. As a result, their contribution to the
energy per particle of PNM is non zero; see Sec. 4.1 for a detailed discussion.

The uncertainty due to regulator artifacts is ≈ 4MeV/A at nuclear saturation density, n0 =

0.16fm−3, which is rather sizable and larger than the truncation-uncertainty estimate of≈ 3MeV/A.
In total, we find an energy per particle in the range≈ 12−19MeV at n0. We have explored the EOS
of PNM at even higher densities in Ref. [46], finding that the uncertainties increase fast as a function
of the baryon density. At twice nuclear saturation density, the total uncertainty is ≈ 6−42MeV.

We have used the AFDMC neutron-matter calculations to study neutron-star–structure observ-
ables and the recent neutron-star merger in Refs. [46–48]. In these studies, we extend the AFDMC
calculations of PNM to neutron-star conditions, i.e., we extend the results to β equilibrium and
include a neutron-star crust. We then use these constraints up to a density ntr, which we vary in the
range of 1−2n0, and extend the results to even higher densities using a speed-of-sound extension.
We find that, even though uncertainties grow quite fast with density, EOS constraints in the density
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Figure 7: EOS of PNM for different choices of the 3N contact operator in VE and cutoff R0 = 1.0fm [24].
The individual colored bands correspond to uncertainties stemming from the truncation of the chiral expan-
sion.

range from 1−2n0 are very valuable to constrain neutron-star radii and the gravitational-wave sig-
nal from neutron-star mergers. Using the EOS up to saturation density as a constraint, we find the
radius of a typical 1.4M� neutron star to be constrained to the range 8.4− 15.2km. In this case,
the maximum mass of neutron stars can be as high as 4.0M�, well beyond the mass of the heaviest
observed neutron stars [49, 50]. This radius range reduces to 8.7−12.6km if the EOS input is used
up to twice nuclear saturation density. In this case, the upper limit on the maximum mass reduced
to 2.9M�.

These results make clear that current theoretical uncertainties need to be reduced in the density
range of 1− 2n0 in order to enable accurate theoretical predictions of neutron-star observables.
Interestingly, this density range is also accessible in terrestrial heavy-ion–collision experiments,
and it provides an ideal overlap for nuclear experiments, theory, and astrophysical observations.

4. Issues of local chiral interactions and possible improvements

4.1 Fierz ambiguity

As discussed in Section 2.2, local chiral interactions are constructed by making use of Fierz
ambiguities for short-range contact interactions in order to eliminate sources of nonlocality. At LO,
the most general interaction is given in Eq. (2.9). By using the antisymmetrization operator A

A f (q,k) =
1
4
(1+σσσ1 ·σσσ2)(1+ τττ1 · τττ2) f

(
q→−2k,k→−1

2
q
)
, (4.1)

to construct the antisymmetrized interaction

Vas(q,k) =
1
2

(
V (q,k)−A V (q,k)

)
, (4.2)

one finds

V LO
cont,as = C̃S1+C̃T σσσ1 ·σσσ2 +

(
−2

3
C̃S−C̃T

)
τττ1 · τττ2−

1
3

C̃S σσσ1 ·σσσ2 τττ1 · τττ2 , (4.3)

10



P
o
S
(
C
D
2
0
1
8
)
1
0
0

Local chiral EFT potentials D. Lonardoni and I. Tews

where only two LECs are linearly independent, as discussed in Section 2.2.
While this reasoning has been used to choose a local set of contact operators in the derivation

of local chiral interactions, when applying a regulator function it remains valid only when the
regulator behaves as

f (q,k) = f
(
−2k,−1

2
q
)
. (4.4)

This relation is fulfilled for typical nonlocal regulators, but it can be immediately seen that local
regulators do not satistfy Eq. (4.4). Therefore, when applying the antisymmetrization operator to a
locally regulated interaction, one finds

V LO,reg
cont,as = C̃S1+C̃T σσσ1 ·σσσ2 +

(
−2

3
C̃S−C̃T

)
τττ1 · τττ2−

1
3

C̃S σσσ1 ·σσσ2 τττ1 · τττ2 +V f
corr(p ·p′) , (4.5)

where the correction term depends on the form of the local regulator function [23]. This correction
is a simple manifestation of the fact that a regulator function affects potential terms beyond the
order at which one is working. This effect will be corrected when including contact operators
at higher orders. In fact, even a regulator which fulfills Eq. (4.4) appears as a global factor in
front of Eq. (4.3), therefore introducing higher-order correction terms ∝ p2n and ∝ p′2n. Local
regulators, instead, introduce regulator artifacts ∝ p ·p′ and, therefore, lead to a mixing of different
partial waves. For instance, the correction in Eq. (4.5) mixes LO S-wave contact interactions into
P-waves, which nonlocal regulators do not do [23]. This effect has been found to lead to sizable
contributions in the 3N sector; see Sec. 3 and Refs. [24, 51].

In Ref. [23], we have investigated the violation of Fierz rearrangement freedom at LO in the
chiral expansion. In particular, we have constructed LO and NLO interactions for all allowed
choices of operator pairs in Eq. (2.9) by fitting them to S- and P-wave phase shifts. In addition,
we have investigated interactions including all four LO operators, where the additional two LECs
were determined so that the regulator artifacts vanish in the P-waves (LOnP), or by fitting them to
the 1P1 and 3P2 partial waves (LOP). We show the resulting phase shifts in Fig. 8.

At LO, while the 1S0 and 3S1−3 D1 coupled channel are reproduced similarly for all operator
combinations, the P-wave phase shifts strongly depend on the operator choice. This uncertainty
was found to be larger than typical truncation uncertainty estimates [23], which has a significant
impact on the description of many-body systems. For instance, Ref. [23] found the EOS of PNM
at LO to dramatically depend on the operator choice, with some operators even leading to bound
neutron matter at nuclear saturation density. Going to NLO and including the first correction terms
was found to restore the Fierz ambiguity to a large extent, and to improve the P-wave phase shifts
as well as many-body properties; see Fig. 8 and Ref. [23].

Similarly to the NN sector, this behavior also persists in the 3N sector, as shown in Section 3
for nuclei and neutron matter. The leading 3N contact interaction VE depends on a general operator
set, similarly to NN contact interactions, and is given by [52]

VE ∝ cE ∑
i< j<k

∑
cyc

Oi jk fshort(ri j) fshort(rk j) , (4.6)

with

Oi jk ∈
{
1,σσσ i ·σσσ j,τττ i · τττ j,σσσ i ·σσσ j τττ i · τττ j,σσσ i ·σσσ j τττ i · τττk,

[
(σσσ i×σσσ j) ·σσσ k

][
(τττ i× τττ j) · τττk

]}
. (4.7)
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Figure 8: S-wave and P-wave phase shifts at LO and NLO for chiral interactions with all possible LO
operator combinations and R0 = 1.0fm [23].

While, once again, the choice of the operators should not influence the final result, for local reg-
ulators the Fierz rearrangement freedom is violated, and different 3N operator choices affect the
predictions for nuclear systems, see Section 3. In particular, we have explored the predictions
for PNM when choosing Oi jk = τττ i · τττ j (Eτ), Oi jk = 1 (E1), and for a projector on triples with
S = 1/2 and T = 1/2 (EP). The impact of these different choices is particularly strong for softer
interactions [17, 18]. A possible solution to these regulator artifacts is the inclusion of sublead-
ing contact interactions, but the subleading 3N contact terms appear only at N4LO. The consistent
implementation of chiral forces at N4LO, however, is currently not feasible.

4.2 Three-nucleon two-pion-exchange interaction

In order to study in detail the effect of the local 3N TPE interaction on the EOS of PNM,
AFDMC calculations have been carried out including only this component of the 3N force [26].
We find that a locally-regulated 3N TPE adds less repulsion to PNM than a nonlocally-regulated
version. In Fig. 9, we show the variation of the PNM energy per particle at saturation density
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Figure 9: Variation of the AFDMC energy per particle in PNM at nuclear saturation density as a function of
the 3N cutoff R3N [26]. Left panel: Variation for R0 = 1.0fm (black lines) and R0 = 1.2fm (red lines). The
horizontal lines correspond to the NN-only result. The different curves correspond to VC when including
different parts of the interactions: The squares are for the long-range c1 and c3 terms of VC, the crosses
additionally include the short-range c3 term of VC, and the circles include all terms of VC. Right panel:
Variation for different exponents n1 and n2 in the long-range regulator function for R0 = 1.2fm.

as a function of the 3N cutoff R3N when only the TPE interaction is included. The horizontal
lines represent the NN-only results. We find that the maximum contribution of the 3N TPE is
found when R0 = R3N , and that this contribution is of the order of 1− 2MeV, only about half as
large as for nonlocal 3N TPE interactions [45]. The discussed behavior is independent of the exact
regulator form, and it is not impacted by the additional shorter-range terms that appear upon Fourier
transformation of the momentum-space TPE expression. The maximal 3N TPE contribution is
larger for larger R0. When R3N is significantly smaller than R0, the system collapses, as the 3N
attraction overcomes the NN repulsion [26].

This behavior has also been investigated in detail in Ref. [51]. In short, local regulators lead to
a smaller effective cutoff for the 3N TPE interaction as compared to nonlocal regulators. As a result,
larger 3N cutoffs are needed to reduce these regulator artifacts. Larger 3N cutoffs, in addition, will
also reduce the regulator artifacts due to the violation of Fierz rearrangement freedom. However,
as shown in Fig. 9, larger 3N cutoffs also require larger NN cutoffs to avoid collapses.

4.3 Local LO interactions at large cutoffs

As introduced in the previous section, a possible solution to minimize local regulator artifacts
is to construct nuclear interactions with larger coordinate-space cutoffs. While such interactions
are not practical for most many-body methods, as they are typically too hard to lead to a reasonable
many-body convergence, QMC methods can efficiently treat harder interactions without difficul-
ties.

To explore this possibility, we have constructed local chiral interactions at LO over a wide
cutoff range [53]. In particular, we have constructed potentials for all possible LO operator struc-
tures with corresponding momentum-space cutoffs ranging from 400 to 4000MeV. When fitting
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0 for local chiral interactions at LO with different local regulators characterized by
n1, n2, and n exponents [53]. Right panel: Spin-isospin LEC C10 as function of the inverse cutoff R1

0 for
local chiral interactions at LO enforcing one, two, and three bound states in the coupled 3S1−3 D1 channel.

to phase shifts, for smooth local regulators there is an ambiguity in the number of bound states in
the 3S1 channel. An arbitrary number of bound states can be realized; see the right panel of Fig. 10.
For the different number of bound states, the spectral LEC C10, where the indices denote S snd T ,
respectively, dramatically varies in size.

When fitting our interactions with smooth local regulators, it is possible to enforce exactly one
bound state in the coupled 3S1−3 D1 channel. While, typically, spurious bound states appear in
partial waves with attractive tensor interactions when the cutoff is increased, enforcing one bound
state in the deuteron channel leads to an increasing spectral LEC C10 in the deuteron channel. Its
magnitude, together with the smoothness of the regulator function, ensures that the attractive parts
of the one-pion exchange leading to spurious bound states are cut off.

Due to the locality of the interactions, this short-range repulsion in the 3S1 partial wave is also
mixed into higher partial waves, but its magnitude and sign depend on the LO operator structure.
We find that for the operators

{
1, σσσ1 ·σσσ2

}
the regulator artifacts are repulsive in all higher par-

tial waves with attractive tensor contributions, where spurious bound states might appear. These
regulator artifacts are also strong enough to compensate for the strong attraction from the one-pion-
exchange interaction and help to avoid spurious bound states. In addition, we find a stabilization of
phase shifts and the deuteron binding energy on cutoff independent plateaus, see Fig. 11. We stress
that this does not imply that these interactions are renormalizable. We simply use local regulator ar-
tifacts to our advantage to construct large-cutoff chiral interactions suitable for QMC calculations.
These interactions will ultimately help us to increase the 3N cutoff and to reduce the 3N regulator
artifacts, and we are currently working on larger-cutoff interactions at higher orders in chiral EFT.

5. Summary

In this proceedings, we have presented recent results from QMC calculations with local chiral
EFT interactions and discussed issues and possible future directions. We have shown that QMC
calculations with local chiral interactions up to N2LO give an excellent description of nuclei up to
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Figure 11: Phase shifts in the 1S0,
3S1,ε1,

3D2,
1P1,

3P1, and 3P2 partial waves for laboratory energies Elab =

10,50,100, and 150MeV, as well as the deuteron ground-state energy Ed (upper right panel) as functions of
the inverse cutoff R−1

0 for the LO operators
{
1, σσσ1 ·σσσ2

}
and n1 = n2 = n = 2 [53].

16O, pure neutron matter, and n-α elastic scattering phase shifts, providing interesting insights on
nuclear structure, short-range correlations, and the properties of neutron stars.

However, the employed potentials can lead to sizable local regulator artifacts that have to be
carefully analyzed. In particular, the violation of the Fierz ambiguity in the 3N sector and lower
effective cutoffs for the 3N TPE lead to sizable 3N regulator artifacts, that increase uncertainties for
nuclei and neutron matter. While a solution would be to include subleading 3N short-range interac-
tions, the implementation of these contribution is currently not feasible. As a possible alternative,
we have discussed large-cutoff chiral interactions that can be treated with QMC methods and also
allow to increase the 3N cutoff, leading to smaller cutoff artifacts. We have presented some results
for such local interactions at LO, and we are currently exploring higher-order potentials.
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