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One-pion exchange defines the longest-range part of the NN interaction, controls the near-
threshold energy dependence of the scattering amplitude and imposes correlations between the
coefficients in the effective range expansion. These correlations may be regarded as low-energy
theorems. We discuss the low-energy theorems for unphysical pion masses and consider various
applications to test recent lattice QCD results. In particular, we demonstrate that the binding en-
ergies of the deuteron and dineutron obtained by the NPLQCD Collaboration at a pion mass of
Mπ = 450 MeV are inconsistent with the low-energy behavior of the corresponding phase shifts
within the quoted uncertainties. Using the binding energies of the deuteron and dineutron as input,
we employ the low-energy theorems to predict the phase shifts and extract the scattering length
and the effective range in the 3S1 and 1S0 channels.
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1. Introduction

Lattice-QCD allows one to calculate nuclear observables from first principles and to study
their light-quark-mass-dependence (or, equivalently, pion-mass dependence). Recent advances in
lattice-QCD allow fully dynamical calculations for unphysical pion masses as low as Mπ ' 300–
400 MeV in NN systems [1, 2, 3] and even for Mπ ∼ Mphys

π for baryon-baryon interactions with
non-zero strangeness [4, 5]. In addition to binding energies also scattering phase shifts became
accessible on the lattice. For example, the NPLQCD collaboration analyzed NN scattering in 1S0

and 3S1 channels at Mπ ' 450 and 800 MeV [3, 6, 7, 8] and the CalLat collaboration presented
higher partial waves at Mπ ' 800 MeV [9, 10]. In spite of large progress in lattice simulations,
lattice-QCD results for the binding energies of the deuteron (3S1) and dineutron (1S0) for larger-
than-physical pion masses are still puzzling, because there is no agreement between different cal-
culations. Many groups report that both the deuteron and dineutron become more bound with
increased pion mass [1, 2, 3, 7, 11]. On the other hand, the HAL QCD collaboration (which uses
a different approach from the references above) finds no bound states in the 3S1 and 1S0 channels
for the pion-mass range from 469 to 1171 MeV [12]. To connect lattice results at pion masses
slightly larger than the physical one with experimental data one can use effective field theory
(EFT) [13, 14, 15, 16, 17, 18, 19, 20, 21]. It is remarkable that many EFT calculations suggest
less attraction in 3S1 and 1S0 channels for higher-than-physical pion masses [13, 16, 15, 21, 20].
These calculations, however, use extra assumptions (such as naturalness and resonance saturation
estimates) about Mπ -dependent four-nucleon contact interactions.

Alternatively, to study the properties of NN scattering at a given pion mass and to check self-
consistency of lattice-QCD results, a method of low-energy theorems (LETs) can be employed [22]
(see also Refs. [23, 24, 25, 26, 27, 28] for earlier studies). Specifically, using knowledge about the
long-range part of the interaction and analytic properties of the scattering amplitude one can predict
correlations (and, in some cases, relations) between observables. LETs were tested in Ref. [22]
at the physical pion mass to predict effective range parameters for NN scattering in 3S1 and 1S0

channels. In Ref. [22], LETs were also generalized to unphysical pion masses and correlations
between effective range expansion (ERE) parameters were derived.

Recently, the NPLQCD collaboration performed a lattice calculation of the binding energies
and phase shifts in 3S1 and 1S0 NN scattering at Mπ = 450 MeV [3]. In this contribution we follow
Ref. [29] and compare these results with predictions of LETs. Specifically we use the binding
energies obtained by NPLQCD as input for LETs to predict phase shifts in 3S1 and 1S0 channels
and then to compare them to the phase shifts calculated on the lattice. We observe that the lattice
phase shifts calculated at two lowest energy points are inconsistent with the lattice binding energies
within quoted uncertainties. We also employ LETs to calculate the values of the scattering length
and effective range, based on the lattice binding energy.

2. Formalism of low-energy theorems

In this section we follow Refs. [22, 29] to briefly summarize the main points of the LETs
formalism. We consider low-energy NN scattering using a potential which can be separated into
the long- and short-range parts, where the long-range part corresponds to the one-pion exchange
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potential (OPEP). The short-distance part is unknown, but assumed to be sufficiently short-ranged
such that its impact can be parameterized just by several parameters.1 At leading order (LO) we
assume that the effect of the short-range potential can be parameterized by a single parameter
(for a given partial wave). At next-to-leading order (NLO) we parameterize it by two parameters
and at higher orders more parameters should be introduced. After solving the nonperturbative
scattering problem for the sum of the short- and long-range potentials we obtain the scattering
observables and binding energies. Since the long-range interaction is fixed, all observables turn
out to be functions of several unknown parameters which parameterize effects of the short-range
interaction. This implies that all scattering observables are correlated by long-range interactions.
These correlations can be interpreted as LETs. Specifically, at LO all observables are functions of
a single parameter. Thus, we can choose one observable (for example, the scattering length) and
re-express all remaining observables in terms of this single observable.

To implement LETs, we use the EFT formulation discussed in Refs. [22, 29]. The scattering
amplitude T in this formulation is calculated as a solution of the Lippmann-Schwinger-type integral
equation introduced originally by Kadyshevsky [31]:

T
(
~p,~p ′,k

)
=V

(
~p ,~p ′

)
+
∫

d3q V
(
~p,~q

)
G(k,q) T

(
~q,~p ′,k

)
, (2.1)

where V =VLong +VShort, the free Green’s function is defined as

G(k,q) =
m2

N

2(2π)3
1(

~q 2 +m2
N

)(
Ek−

√
~q 2 +m2

N + iε
) , (2.2)

~p (~p ′) denotes the incoming (outgoing) three-momentum of the nucleon in the cms and Ek =√
~k2 +m2

N with mN standing for the nucleon mass and~k being the corresponding three-momentum.
The long-range part of the interaction potential is defined by one-pion-exchange potential (OPEP):

VLong
(
~p,~p ′

)
=− g2

A
4F2

π

~σ1 · (~p−~p ′) ~σ2 · (~p−~p ′)
(~p−~p ′) 2 +M2

π

τττ1 · τττ2, (2.3)

where ~σi (τττ i) denote the spin (isospin) Pauli matrices of the nucleon i, gA is axial vector coupling
of the nucleon and Fπ is the pion decay constant. The short-range interaction at LO is parameter-
ized by a derivative-less (momentum-independent, zero-range) contact interaction V LO

Short =C0. We
use the Kadyshevsky equation (2.1)–(2.2) instead of the standard Lippmann-Schwinger equation
(LSE), because for the potentials we are considering, this equation is proven to be exactly renor-
malizable [32]. Therefore one can set the cutoff in Eq. (2.1) to infinity to avoid practical problems
related with the finite cutoff artifacts. In principle, one can also use the standard LSE with a finite
cutoff to implement the LETs, if the finite-cutoff effects are properly controlled.

At NLO, the finite-range effects of the short range interaction are taken into account. To in-
troduce NLO contact interactions and still preserve explicit renormalizability we use the resonance

1Effects of the short range potential on low-energy scattering can be parameterized in various ways. For example,
one can parameterize them by the scattering length, effective range and shape parameters of the short-range part of the
potential [30]. In the EFT formulation, the effects of short range interactions are encoded in low-energy constants.
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saturation method [22]. The NLO correction to the potential is introduced as a heavy-meson ex-
change potential:

V NLO
Short

(
~p,~p ′

)
= β

~σ1 · (~p−~p ′) ~σ2 · (~p−~p ′)
(~p−~p ′) 2 +M2 , (2.4)

where the heavy-meson mass M is chosen to be 700 MeV and the strength β parameterizes the
finite-range effects of the short range interaction. For the physical pion mass the value of β is fitted
to reproduce the empirical value of the effective range in the 1S0 and the 3S1 channels (separately
for each partial wave). The functional form of the NLO term (i.e. spin-angular structure, the value
of heavy-meson mass) is not important as long as this term remains of a short range.

To get quantitative predictions based on LETs, we solve the coupled-channel2 integral equation
(2.1) numerically in the partial wave basis and get the scattering amplitude T as a function of the
contact terms. For an uncoupled channel with zero orbital angular momentum (1S0), the on-shell
scattering amplitude T (k) ≡ T (k,k,k) can be expressed in terms of the so-called effective range
function F(k)≡ k cot δ (k) via

T (k) =−16π2

mN

1
F(k)− ik

. (2.5)

The effective range function is easier to parameterize than the scattering amplitude, because it does
not have the kinematic unitarity cut and is a real meromorphic function of k2 in the vicinity of
k = 0 [33, 34]. It can be expanded into Taylor-series around k = 0 leading to the effective range
expansion:

F(k) = k cot δ (k) =−1
a
+

1
2

rk2 + v2k4 + v3k6 + v4k8 + . . . , (2.6)

where a is the scattering length, r is the effective range, and vi are the so-called shape parameters.
For the coupled-channel 3S1− 3D1 problem the above formalism is generalized to include the 3D1

phase shift and 3S1− 3D1 mixing angle.
To implement the LETs at LO, a single observable is used as input to fix the short range param-

eter, and other observables are then predicted. Alternatively, one can plot scattering observables as
functions of the input. For example, the ERE parameters as functions of the scattering length are
calculated in Ref. [22]. For NLO LETs one has to fix one more parameter. At the physical pion
mass we use the empirical values of the effective range in 1S0 and 3S1 channels to fix the NLO
parameters.

Generalization of LETs to unphysical pion masses is performed in a straightforward way [22].
The largest effect comes from the variation of the pion mass in the propagator of OPEP. Additional
effects come from the Mπ -dependence of Fπ , mN , and gA. We use the fits of lattice data performed
in Ref. [22] to determine Fπ , mN , and gA at unphysical pion masses.

The short-range parameters should be fixed from observables at a given unphysical pion mass.
For LO LETs the single short-range parameter can be determined, for example, from the scattering
length or from the binding energy at a given unphysical pion mass. Unlike chiral extrapolations,
no assumptions are made about Mπ -dependence of the short range parameter C0.

At NLO there is one more parameter, which parameterizes the short-range effects. There are
several strategies which can be used to determine its value or a range of values. If there is enough

2We solve coupled-channel equation for 3S1− 3D1 case, and single channel equation for 1S0 case.
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lattice data, it can be fixed from some observable at the unphysical pion mass. In practice, we
assume that the parameter β does not change dramatically compared to its value at the physical
pion mass. Note that unnaturally large values of β will increase the finite-range effects of the
short range potential and thus violate our main assumption that long-range effects are dominated
by OPEP. To quantify the range of β values, we introduce dimensionless parameter δβ , which
defines the natural range of β for pion masses larger than the physical one. Formally, we restrict
the M2

π -dependence of β by the following inequality:

1−δβ

∣∣∣∣∣M2
π − (Mphys

π )
2

∆M2
π

∣∣∣∣∣≤ β (Mπ)

β (Mphys
π )

≤ 1+δβ

∣∣∣∣∣M2
π − (Mphys

π )
2

∆M2
π

∣∣∣∣∣ , (2.7)

with ∆M2
π ≡ (Mref

π )
2− (Mphys

π )
2
, Mref

π = 500 MeV, and β (Mphys
π ) fixed at the physical pion mass.

For our central 3S1 results we use δβ = 0.5, which means that β can change by 50% when going
from the physical value of Mπ to Mπ = 500 MeV. This choice of δβ is motivated by the fact that it
would cover the known Mπ -dependence of gA, Fπ and mN if the same procedure is applied to these
quantities. In the next section, we will also give results corresponding to the more conservative
choice of δβ = 1.0. For calculations in the 1S0 channel we use δβ = 1.0, due to a larger role of
short-range forces in that channel. We have checked that introducing a reasonable3 Mπ -dependence
in the heavy meson mass does not increase the uncertainty, because its effect is simulated by the
variation of β .

3. Analysis of NPLQCD results at Mπ = 450 MeV

The NPLQCD collaboration in Ref. [3] reported their results for lattice calculations of the
deuteron and dineutron binding energies and the 1S0 and 3S1 phase shifts at the pion mass Mπ ' 450
MeV. The deuteron and dineutron binding energies quoted in Ref. [3] at Mπ ' 450 MeV are

Bd = 14.4
(
+3.2
−2.6

)
MeV, Bnn = 12.5

(
+3.0
−5.0

)
MeV, (3.1)

where the errors come from statistical, systematic, and extrapolation uncertainties combined in
quadrature. The phase shifts calculated in Ref. [3] and the corresponding uncertainties are shown
as filled black regions in Fig. 1 (left) for 3S1 and Fig. 2 (left) for 1S0. Further, the obtained deuteron
binding energy and two lowest-energy phase shift data points are used in Ref. [3] to extract the
ERE parameters using the effective range approximation

k cotδ '−1
a
+

1
2

rk2. (3.2)

The result of this fit is shown by gray bands in Fig. 1 (right) and Fig. 2 (right). The inverse scattering
length and the effective range extracted from this fit in Ref. [3] read:(

Mπa(
3S1)

NPLQCD

)−1
=−0.04

(
+0.07
−0.10

)(
+0.08
−0.17

)
, Mπr(

3S1)
NPLQCD = 7.8

(
+2.2
−1.5

)(
+3.5
−1.7

)
, (3.3)(

Mπa(
1S0)

NPLQCD

)−1
= 0.021

(
+0.028
−0.036

)(
+0.032
−0.063

)
, Mπr(

1S0)
NPLQCD = 6.7

(
+1.0
−0.8

)(
+2.0
−1.3

)
, (3.4)

where the uncertainties in the first and second brackets are statistical and systematic, respectively.
3Of the same order as Mπ -dependence of other masses.
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Figure 1: Neutron-proton phase shifts (left panel) and the effective-range function (right panel) in the 3S1

channel calculated on the lattice at Mπ ∼ 450 MeV [3] (filled black regions) in comparison with the predic-
tions based on the LETs at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue
light-shaded bands) using the NPLQCD result for the deuteron binding energy Bd as input. The uncertainty
at LO shown by the orange bands is entirely given by the uncertainty of Bd in Eq. (3.1). The NLO dark-
shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and the theoretical uncertainty of
the LETs estimated via the variation of β with δβ = 0.5 (δβ = 1.0) combined in quadrature. The gray
light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [3] based
on the effective range approximation (3.5). The energy of the bound (virtual) states corresponds to the in-

tersection points of the effective-range function k cotδ (3S1) and the unitarity term ik/Mπ = ±
√
−(k/Mπ)

2,
shown by the dotted line in the right panel, in the lower (upper) half-plane. The phase shift corresponds to
the Blatt-Biedenharn parametrization of the S-matrix [35].

3.1 Application of LETs to 3S1 channel

We now take NPLQCD’s value of the deuteron binding energy Bd of Eq. (3.1) as input and
employ LETs to predict the phase shifts in the 3S1 channel. At LO, the single parameter in LETs
is fixed by the deuteron binding energy, and at NLO an extra parameter is fixed as discussed in
Section 2. Our LET-based prediction of the phase shift and the effective range function are shown
in Fig. 1 as orange (LO) and blue (NLO) bands. The width of the LO (orange) band corresponds
to the uncertainty in the input binding energy of Eq. (3.1) and does not include the theoretical
uncertainty of the LETs. The accuracy of the NLO LETs can be estimated by the width of the
blue band, which corresponds to the variation of β parameter using δβ = 0.5. This variation is
consistent with the shift from LO to NLO LETs. As can be seen from Fig. 1 (left), the NLO LET
prediction for 3S1 phase shifts agrees with lattice results at higher momenta, but disagrees at lower
momenta within reported uncertainties. It is also remarkable that the lattice phase shifts tend to
0◦ at k = 0, while phase shifts generated by LETs go to 180◦ in agreement with the Levinson’s
theorem. We have checked that using a much stronger Mπ -dependence of β than of other coupling
constants and masses does not change our conclusions. For illustration, the results of NLO LETs
with δβ = 1 are shown in Fig. 1 as hatched blue band. We observe that even a very conservative
estimation of NLO terms cannot remove the disagreement between LETs and lattice data at low
energies.

As a next step, we extract the scattering length and effective range corresponding to the phase

5
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Figure 2: Two-nucleon phase shifts (left panel) and the effective-range function (right panel) in the 1S0

channel calculated on the lattice at Mπ ∼ 450 MeV [3] in comparison with the predictions based on the
LETs at LO and NLO using the NPLQCD result for the dineutron binding energy of Eq. (3.1) as input. For
notation see Fig. 1.

shifts generated by LETs. We obtain the following results based on LO and NLO calculations:(
Mπa(

3S1)
LET, LO

)−1
= 0.229

(
+0.019
−0.018

)
,(

Mπa(
3S1)

LET, NLO

)−1
= 0.196

(
+0.014
−0.013

)(
+0.007
−0.004

)
,

Mπr(
3S1)

LET, LO = 1.62
(
+0.06
−0.06

)
,

Mπr(
3S1)

LET, NLO = 2.44
(
+0.08
−0.08

)(
+0.12
−0.17

)
,

(3.5)

where uncertainties in the first brackets correspond to the error bars of the input deuteron binding
energy of Eq. (3.1), and for NLO results the second error bars correspond to the variation of the
NLO parameter δβ = 0.5. These results are in contradiction with the values obtained by the
NPLQCD Collaboration, given in Eq. (3.3). Specifically, our effective range is a factor of three
smaller than the result of NPLQCD.

The effective-range-expansion fit of Ref. [3] may suffer from self-inconsistency issues dis-
cussed in Ref. [29]. To illustrate this point we consider the relation between the scattering ampli-
tude and the effective range function given by Eq. (2.5). According to Eq. (2.5), every solution of
the equation

F(k) = ik (3.6)

corresponds to a pole in the scattering amplitude. Graphical solutions of this equation are visualized
in Fig. 1 (right), where each intersection of F(k2) with the ik term (dotted curve) indicates a bound
or virtual state. The function F(k2) corresponding to the ERE fit done in Ref. [3] crosses the ik term
twice: the first intersection corresponds to Eq. (3.1) and the second intersection in the vicinity of
zero corresponds to a shallow pole in the scattering amplitude. This implies that the deeper bound
state (Eq. (3.1)) is outside of the ERE validity range, and the ERE fit is not self-consistent. See
Ref. [29] for the extended discussion of this issue.

3.2 Application of LETs to 1S0 channel

In this section we use the LETs to check consistency of the lattice results in the 1S0 channel.
First, we take the NPLQCD’s dineutron binding energy in Eq. (3.1) as input for the LETs and
predict the 1S0 phase shifts at LO and NLO. Our results are shown in Fig. 2 as orange (LO) and

6
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Figure 3: Two-nucleon phase shifts (left panel) and the effective-range function (right panel) in the 1S0

channel calculated on the lattice at Mπ ∼ 450 MeV [3] in comparison with the predictions based on the
LETs at NLO (blue shaded bands) using the scattering length in Eq. (3.8) as input. For remaining notation
see Fig. 1.

blue (NLO) bands. Notice, that the shift between LO and NLO LETs results in the 1S0 channel is
larger than in the 3S1 case because the OPEP strength (and thus the predictive power of LETs) is
lower in the 1S0. For this reason, to estimate NLO LETs theoretical uncertainty in the 1S0 channel
we use an increased range of the NLO parameter corresponding to δβ = 1. Expanding the phase
shift predicted by LETs, we get the scattering length and effective range:

(
Mπa(

1S0)
LET, LO

)−1
= 0.244

(
+0.026
−0.051

)
,(

Mπa(
1S0)

LET, NLO

)−1
= 0.175

(
+0.013
−0.028

)(
+0.024
−0.008

)
,

Mπr(
1S0)

LET, LO = 0.90
(
+0.14
−0.06

)
,

Mπr(
1S0)

LET, NLO = 2.86
(
+0.27
−0.12

)(
+0.27
−0.74

)
,

(3.7)

where the NLO theoretical uncertainty is calculated assuming δβ = 1. Comparing 1S0 LETs pre-
dictions with lattice results we obtain similar conclusions as for the 3S1 channel. Namely, the phase
shifts are consistent at larger energies, but disagree at lower ones. Consequently, the LETs results
for a and r also disagree with the NPLQCD fit, which has the same self-consistency issues as in
the 3S1 case.

Low-energy theorems can be also used to predict binding energies from low-energy phase
shifts data (or, equivalently, from ERE parameters). To illustrate this application, we choose the
value of the 1S0 scattering length in a range which is consistent with the two lowest phase shift data
points on the lattice: (

Mπa(
1S0)
)−1

=−0.01±0.06. (3.8)

Using this scattering length as input for LETs, we calculate the phase shifts and the dineutron
binding energy. Predicted phase shifts and the corresponding effective range function are shown in
Fig. 3. In this case, the dineutron shows up as a shallow bound (or virtual) state with the energy:

Bnn < 0.5MeV Bvirtual
nn < 0.6MeV. (3.9)

Note that in this case, there is no deeper bound state.
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4. Conclusion

Low-energy theorems can be understood as correlations between scattering observables, which
result from the analytic properties of the one-pion exchange potential — the longest-range part of
the NN interaction. We have applied low-energy theorems to NN scattering at unphysical pion
masses to check and augment recent lattice QCD results.

Specifically, we have shown that the binding energies of the deuteron and dineutron obtained
by the NPLQCD Collaboration at the pion mass of Mπ = 450 MeV are inconsistent with the low-
energy behavior of the corresponding phase shifts within the quoted uncertainties. This may indi-
cate underestimated systematic uncertainties or issues with the determination of phase shifts or the
binding energies on the lattice.

We use the NPLQCD binding energies of the deuteron and dineutron as input for the low-
energy theorems to predict the phase shifts and to extract the scattering length and the effective
range in the 3S1 and 1S0 channels. The values we obtain are much smaller in magnitude than the
corresponding lattice results. If we use the lattice value of the 1S0 scattering length as input for
LETs, then the dineutron is expected to be a shallow bound or virtual state.

We have illustrated how LETs can be used to predict scattering observables for unphysical pion
masses and to perform consistency checks of lattice results when several scattering observables are
calculated on the lattice.
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