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1. Introduction

The axial U(1)A symmetry plays a uniquely important role in quantum chromodynamics
(QCD). In the low-temperature phase of QCD, it is violated by the chiral anomaly. This anomaly
is closely related to topological excitations of background gluon fields, such as the instantons, and
it induces the larger mass of the η ′ meson. In the high-temperature phase, the (spontaneously bro-
ken) chiral symmetry is restored while the fate of the U(1)A symmetry is a longstanding problem
of QCD and is still under debate.

This problem has been attacked using lattice QCD simulations at N f = 2 [1, 2, 3, 4] and
N f = 2+1 [5, 6, 7, 8, 9] as well as analytic approaches. In particular, in Ref. [10], Cohen suggested
that the U(1)A symmetry of massless N f = 2 QCD is restored if the contributions from the zero
modes of Dirac eigenvalues can be ignored. As a result, the mesonic correlators for π , σ , δ ,
and η channels can degenerate. More recently, the authors of Ref. [11] analytically proved that
the violation of the U(1)A symmetry of massless N f = 2 QCD becomes invisible under some
assumptions such as the analyticity of the Dirac spectral density near the origin (for an alternative
proof, see Ref. [12]). They also suggested a possible modification of the phase diagram for up and
down quark masses mu,d and strange quark mass ms (which is known as the so-called Columbia
plot, see Fig. 1), based on an effective theory [13]. When the U(1)A symmetry is violated in the
chiral limit (mu,d = 0) for N f = 2, the chiral phase transition at mu,d = 0 is expected to be second-
order belonging to the three-dimensional O(4) universality class (see the left of Fig. 1). On the
other hand, if the U(1)A symmetry is restored, the chiral phase transition at mu,d = 0 may be first-
order or second-order belonging to an unusual universality class (which is not O(4)). In the case of
first-order transition, we expect that a nonzero “critical mass” mcri

u,d may exist since the first-order
region (m < mcri

u,d) and the crossover region (m > mcri
u,d) must be separated by a mass boundary (see

the right of Fig. 1). The existence of such a critical mass could also affect even the phase structure of
N f = 3 QCD. In addition, for other theoretical discussions, see Refs. [14, 15, 16, 17, 18, 19, 20, 21].

Employing chiral symmetric fermion actions, the JLQCD Collaboration observed a restoration
of the U(1)A symmetry above the critical temperature Tc in N f = 2 lattice QCD [1, 4]. In Ref. [1],
the U(1)A symmetry was investigated using the Dirac eigenvalue spectra on gauge configurations
generated with the dynamical OV fermions in a fixed topological sector, Q = 0. After that, in
Ref. [4], the gauge configurations with dynamical Möbius domain-wall (MDW) fermions [22, 23]
has bee used without fixing topological sectors. Since the GW relation for MDW fermions is
slightly violated especially for larger lattice spacings [24], we utilized the DW/OV reweighting
technique [25, 4]. In this case, an observable measured on the gauge ensembles with dynamical
MDW fermions can be transformed (or reweighted) to that on OV fermion ensembles, and then we
can finally evaluate the observable satisfying the GW relation.

In these proceedings, in order to examine the U(1)A symmetry in the high-temperature phase
above Tc, we show the results of the U(1)A susceptibility, topological susceptibility, and corre-
sponding Dirac spectra from N f = 2 lattice QCD simulations, where finer lattice spacing, 1/a =

2.64GeV (a∼ 0.075fm), than the previous works [1, 4] is used. Note that a part of the results has
also been reported in previous proceedings [26, 27, 28].
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Figure 1: Phase diagrams of QCD for up and down quark masses mu,d (horizontal axis) and strange quark
mass ms (vertical axis). Left: The conventional phase diagram. Right: A possible diagram when the U(1)A

is restored above Tc, which is suggested in Ref. [11].

2. Simulation setup

2.1 U(1)A susceptibility on the lattice

As an order parameter of the U(1)A symmetry breaking, the U(1)A susceptibility, ∆π−δ , is
defined as a difference between the correlators of isovector-pseudoscalar (πa ≡ iψ̄τaγ5ψ) and
isovector-scalar (δ a ≡ ψ̄τaψ) operators:

∆π−δ ≡ χπ −χδ ≡
∫

d4x〈πa(x)πa(0)−δ
a(x)δ a(0)〉, (2.1)

where a is an isospin index when we consider two-flavor (N f = 2) QCD.
In the continuum theory, the U(1)A susceptibility (2.1) can be rewritten by the Dirac eigenvalue

spectral density for fermions with a mass m:

∆π−δ =
∫

∞

0
dλ ρ(λ )

2m2

(λ 2 +m2)2 , (2.2)

where ρ(λ ) = (1/V )〈∑λ ′ δ (λ −λ ′)〉 with the Dirac eigenvalues λ is the Dirac eigenvalue spectral
density, and V = L3×Lt is the four-dimensional volume. In the lattice theory, the U(1)A suscepti-
bility for OV fermion operators is given by [24]

∆
ov
π−δ

=
1

V (1−m2)2

〈
∑

i

2m2(1−λ
(ov,m)2
i )2

λ
(ov,m)4
i

〉
, (2.3)

where λ
(ov,m)
i is the i-th eigenvalue of the (hermitian) massive overlap-Dirac operator, and the

lattice spacing is set to a = 1. If the GW relation is not exact, we have to introduce additional terms
in Eq. (2.3) [24].

In the following, we discuss two types of subtractions in the U(1)A susceptibility: the chiral
zero modes and the ultraviolet divergence should be subtracted by a definition.
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The definition of Eq. (2.3) contains the contribution from nontrivial topological sectors, which
is related to chiral zero modes with λ

(ov,m)
i ≈±m, where “≈” means possible small violation of the

GW relation in our setup (If the GW relation is exact, then λ
(ov,m)
i =±m holds). After subtracting

zero modes, we define a modified U(1)A susceptibility:

∆̄
ov
π−δ
≡ ∆

ov
π−δ
− 1

V (1−m2)2

〈
∑

0−mode

2m2(1−λ
(ov,m)2
i )2

λ
(ov,m)4
i

〉
. (2.4)

In the thermodynamic limit (V → ∞), such a subtraction of zero modes can be justified as follows
[11]. If the GW relation is exact, the second term of Eq. (2.4) can be written as 2N0/V m2, where N0

is the number of chiral zero modes. 〈N2
0 〉 is expected to scale as O(V ), so that N0/V also scale as

O(1/
√

V ). Therefore, the contribution from the chiral zero modes vanishes in the thermodynamic
limit: N0/V → 0 as V → ∞.

Next, we subtract contributions from the ultraviolet divergence. Eq. (2.2) in the continuum
theory contains an (logarithmic) ultraviolet divergence. Eq. (2.3) on the lattice includes a large
contribution from the lattice cutoff Λ instead of the divergence, which is proportional to m2 lnΛ.
Therefore, ∆π−δ (m) at a valence quark mass m can be parametrized as

∆π−δ (m) =
a

m2 +b+ cm2 +O(m4), (2.5)

where the first term is the contribution from the chiral zero modes.1 The second term is the U(1)A

violation we desire. The third term represents the contribution of m2 lnΛ. Here, in order to remove
a and c, and to get only b, we use three susceptibilities ∆π−δ (m1,2,3) for three different valence
quark masses (m2 < m1 < m3, where for example we choose m2 = 0.999m1 and m3 = 1.001m1 to
keep the partially quenching artifact under control):

b' ∆
finite
π−δ
≡

(m2
1 +m2

2)(m
2
1 +m2

3)

m2
3−m2

2

[
m2

1∆(m1)−m2
2∆(m2)

m4
1−m4

2
−

m2
1∆(m1)−m2

3∆(m3)

m4
1−m4

3

]
. (2.6)

Note that we can use this formula also for ∆̄π−δ (m) as defined in Eq. (2.4). In that case, the
contributions from the zero modes in ∆finite

π−δ
are subtracted by Eq. (2.4), so that the contribution

with a/m2 is already absent.

2.2 Topological susceptibility on the lattice

The topological susceptibility is defined as the gauge ensemble average

χt =
〈Q2

t 〉
V

, (2.7)

where the topological charge Qt is an integer value and we have two types of definitions. As a
fermionic definition, it is determined by the index theorem for the overlap Dirac operator:

Qt = n+−n−, (2.8)

1When the GW relation is exact, the second term of Eq. (2.4) is equivalent to the a
m2 term of Eq. (2.5). In that sense,

the procedure of Eqs. (2.5) and (2.6) is an alternative method to subtract zero modes.
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Table 1: Numerical parameters in lattice simulations. L3×Lt , Ls, β , a, and m are the lattice size, length
of the fifth dimension in the Möbius domain-wall fermion, gauge coupling, lattice spacing, and quark mass,
respectively.

L3×Lt Ls β a [fm] T [MeV] am
243×12 16 4.30 0.075 220 0.001
243×12 16 4.30 0.075 220 0.0025
243×12 16 4.30 0.075 220 0.00375
243×12 16 4.30 0.075 220 0.005
243×12 16 4.30 0.075 220 0.01
323×12 16 4.30 0.075 220 0.001
323×12 16 4.30 0.075 220 0.0025
323×12 16 4.30 0.075 220 0.00375
323×12 16 4.30 0.075 220 0.005
323×12 16 4.30 0.075 220 0.01
403×12 16 4.30 0.075 220 0.005
403×12 16 4.30 0.075 220 0.01
483×12 16 4.30 0.075 220 0.001
483×12 16 4.30 0.075 220 0.0025
483×12 16 4.30 0.075 220 0.00375
483×12 16 4.30 0.075 220 0.005

where n± is the number of chiral zero modes with positive or negative chirality. As a gluonic
definition, the topological charge at flow time t is defined as the summation over the spacetime x:

Qt(t) =
1

32π2 ∑
x

ε
µνρσ TrFµν(x, t)Fρσ (x, t), (2.9)

where Fµν is the field strength defined by clover construction on the lattice [29]. This definition is
generally not an integer, but we see a clear well-discretized distribution of Qt at t = 5. We round
off its non-interger part.

2.3 Numerical setup

We use the lattice with the imaginary time length Lt = 12 which corresponds to T = 220MeV
at the lattice spacing, 1/a = 2.64GeV (a∼ 0.075fm). To carefully examine finite volume effects,
we apply the spatial lengths L = 24,32,40,48. Also, to study quark mass dependence, we use the
five kinds of quark masses: am = 0.001−0.01 (2.64−26.4MeV).2 In Table 1, we summarize the
simulation parameters.

We use the tree-level Symanzik improved gauge action. For the fermion part, we apply the
MDW fermions [22, 23] with a smeared link. By using the DW/OV reweighting technique [25, 4],
an observable O measured on the MDW fermion ensembles is transformed to that on the OV
fermion:

〈O〉ov =
〈OR〉DW

〈R〉DW
, (2.10)

2Here, m is the bare quark mass and is not renormalized. We estimate a preliminary value of the physical quark
mass (the average of the up and down quarks) to be am = 0.0014(2) (3.7(5)MeV).
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Figure 2: Spectral density ρ(|λ |) for overlap-Dirac eigenvalues λ at T = 220MeV. Upper panel: m =

2.64MeV. Lower panel: m = 26.4MeV. Blue and magenta bins correspond to the spectra on the original
Möbius domain-wall (DW) and reweighted overlap (OV) fermion ensembles, respectively.

where the two types of expectation values, 〈· · · 〉DW and 〈· · · 〉ov, are the ensemble average with the
MDW and reweighted OV fermions, respectively. A value R is called the reweighting factor and
it is stochastically estimated on the MDW fermion ensembles [25, 4]. The reweighting procedure
reduces the violation of the GW relation for the MDW fermions.

3. Preliminary results

3.1 Spectral density of overlap-Dirac eigenvalues

In Fig. 2, we show the spectral density ρ(|λ |) of the overlap-Dirac eigenvalues λ at T =

220MeV, which is observed both on the MDW ensembles (blue bins) and reweighted OV (magenta
bins) ensembles. As shown in the upper panel of Fig. 2, at a light quark mass m = 2.64MeV, we
find that the eigenmodes in the low energy region are strongly suppressed. Then the chiral zero
modes and higher nonzero modes can be clearly distinguished. According to the definition (2.4)
of the U(1)A susceptibility, ∆̄ov

π−δ
is induced by the low non-zero modes (chiral zero modes are

subtracted by definition). Therefore, the strong suppression of the low modes on the spectra leads
to the small value of ∆̄ov

π−δ
. Notice that the zero modes on the spectrum on the DW (blue bins)

5
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Figure 3: Quark mass dependence of U(1)A susceptibilities, ∆̄ov
π−δ

, from the eigenvalue density of the
overlap-Dirac operators at T = 220MeV. Left: UV-included (open) or UV-subtracted (filled) results on
the Möbius domain-wall (squares) or reweighted overlap (circles) ensembles at L = 32. Right: Volume
dependence (L = 24,32,40,48).

are caused by the discrepancy between the valence (OV) quark and sea (MDW) quarks. In other
words, these zero modes are artifacts induced by the partially quenched approximation. After the
DW/OV reweighting (magenta bins), we can completely remove such fictitious zero modes.

As shown in the lower panel of Fig. 2, at a large quark mass m = 26.4MeV, not only the chiral
zero modes but also low nonzero modes are enhanced more frequently. Then we cannot clearly
separate the zero modes from other modes. The increase of the low but nonzero modes leads to
a large value of ∆̄ov

π−δ
, as shown in Subsection 3.2. Here, the zero modes observed on the DW

ensemble survive even after the DW/OV reweighting, which indicates that these zero modes are
not artifacts but really physical ones. The appearance of these physical zero modes is related to the
nonzero values of the topological charge and susceptibility, as discussed in Subsection 3.3.

3.2 U(1)A susceptibility

In Fig. 3, we show the quark mass dependence of the U(1)A susceptibility ∆̄ov
π−δ

at T =

220MeV. The left panel shows the results at the spatial volume L3 = 323. Here, the magenta
circles (blue squares) represent the result on the OV (DW) ensembles. ∆̄ov

π−δ
on the DW suffers

from fictitious modes by the violation of the GW relation, so that we expect that the results overes-
timate the true value. On the other hand, ∆̄ov

π−δ
on the OV is expected to be closer to the continuum

limit. Also, the open (filled) symbols denote the results before (after) the UV subtraction by the
procedure of Eq. (2.6). While the results with ultraviolet contributions overestimate ∆̄ov

π−δ
, the

UV-subtracted results should be more reliable. Therefore, in the following we focus on the filled
magenta circles.

In the small quark mass region (m . 10MeV), ∆̄ov
π−δ

nearly vanishes, which strongly suggests
that the U(1)A symmetry is restored in the chiral limit. Furthermore, near m ∼ 10MeV, we find a
sudden increase of ∆̄ov

π−δ
. This behavior may imply the existence of a “critical mass” as discussed

in Ref. [11]. In the large quark mass region, ∆̄ov
π−δ

shows a large value, which indicates that the
U(1)A symmetry is clearly broken.
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Figure 4: Quark mass and volume (L = 24,32,40,48) dependence of topological susceptibilities χt at T =

220MeV. Left: χt measured from gluonic operator on the Möbius domain-wall ensembles. Right: χt

measured from index of overlap Dirac operator on reweighted overlap ensembles.

In the right panel of Fig. 3, we show the volume dependence of the U(1)A susceptibility. For
the small quark mass, there is no visible volume dependence between L = 24 and 48. On the
other hand, at the largest quark mass m = 26.4MeV, we found a clear volume dependence between
L = 24 and 32. We emphasize that the reason for this behavior needs to be carefully studied.

3.3 Topological susceptibility

In Fig. 4, we show the quark mass dependence of the topological susceptibility χt at T =

220MeV, where we compare the two types of measurements from the fermionic definition (2.8)
or gluonic one (2.9) on the MDW or OV ensembles. In the left panel, we focus on χt from the
gluonic operator on the Möbius domain-wall ensembles, and the right panel is from the index of
overlap Dirac operator on reweighted overlap ensembles. In the small quark mass region below
m ∼ 10MeV, both plots indicate that χt is strongly suppressed, and there is no visible volume
dependence between L = 24 and 48 within the error bars. On the other hand, in the large quark
mass region, we find a nonzero value of χt .

4. Conclusion and outlook

In this study, we investigated the U(1)A symmetry and topological charge in the high-temperature
phase with N f = 2 lattice QCD simulation. The quark mass dependence of the U(1)A susceptibility
at T = 220MeV suggests the restoration of U(1)A symmetry in the chiral limit, which is consistent
with the theoretical prediction of Ref. [11]. As another observables for indicating the restoration
of U(1)A symmetry, hadronic correlators are also interesting. For example, the spatial mesonic
correlators from our configurations are studied in Refs. [30, 31].

In the future, simulations at lower temperature (T < 220MeV) should be studied. In addition,
the simulations including N f = 2+ 1 fermions need to be performed. The previous studies with
N f = 2+ 1 fermions in Refs. [5, 6, 7, 8, 9] implied visible breaking of U(1)A symmetry, and the
comparison between the results with N f = 2 and N f = 3 should be also important.
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