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We discuss the convergence properties of chiral expansions for the pseudoscalar and vector
charmed meson masses based on the chiral SU(3) Lagrangian. Conventional expansion strate-
gies as formulated in terms of bare meson masses are shown to suffer from poor convergence
properties. This changes once the expansion is set up in terms of on-shell masses. We find a
rapid convergence of the chiral expansion from vanishing quark masses up to physical values of
the strange quark mass in this case. Detailed results are presented at the one-loop level for the
D-meson and D∗-meson masses. It is emphasized that our results do not depend on the renor-
malization scale. An approximation hierarchy for the chiral Ward identities of QCD is obtained
that keeps the proper form of low-energy branch points and cuts as they are implied by the use of
on-shell masses. Given such a scheme we analyzed the charmed meson masses as available on
various QCD lattice ensembles. In terms of the determined low-energy constants we consider the
coupled-channel interactions of the Goldstone bosons with open-charm mesons. For the isospin
violating hadronic decay width of the D∗s0(2317) we predict the range (104−116) keV.
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1. Introduction

There is a significant effort to compute charm meson masses on lattice ensembles [1, 2, 3,
4, 5, 6]. Can this data set help to arrive at stringent predictions of QCD for the coupled-channel
dynamics of open-charm meson systems as accessed in the laboratory? While the computation of
ground state masses on lattice ensembles is quite matured by now, this is not so much the case
for scattering observables as needed for a profound interpretation of experimental data. Indeed
chiral dynamics predicts the low-energy constants that determine the quark-mass dependence of
the charmed meson masses to dominate the s-wave coupled-channel interaction of the Goldstone
bosons with those charmed mesons [7].

While such a link does exist beyond any doubt, it is controversial to what extent it can be
used in an efficient and reliable manner. The challenges are strange degrees of freedom which are
known from phenomenology to very often drive the generation of hadron resonances via coupled-
channel dynamics. Thus, any chiral extrapolation in the up and down quark masses only, will not
be able to do the job. Such a program can be useful only if the role of the strange quark in the
chiral Lagrangian can be further clarified. If setup in a conventional manner a chiral expansion
in the strange quark mass appears futile: the convergence properties are quite unfortunate at its
physical value. In a recent work, this problem has been studied at hand of SU(3) chiral correction
terms in the light baryon masses [8]. It was demonstrated that using on-shell hadron masses in
loop contributions does lead to much improved convergence properties of the chiral expansion.
A power-counting scheme in terms of on-shell hadron masses has been established leading to a
convincing convergence pattern. As an unavoidable consequence of such a chiral extrapolation of
a hadron mass non-linear and coupled sets of equations have to be solved.

In this contribution, we focus on chiral SU(3) expansions of pseudoscalar and vector charmed
meson masses. The various facets of the chiral extrapolation challenge are illustrated by an anal-
ysis of the one-loop expressions, as they are implied by the chiral Lagrangian formulated for the
charmed meson fields with JP = 0− and JP = 1− quantum numbers. We report on a successful
application of our chiral extrapolation scheme with on-shell hadron masses to the available QCD
lattice simulation results for the charmed meson masses [9]. Further constraints from lattice results
on the s-wave scatterings of D-mesons off Goldstone bosons [3, 6] are considered.

2. The chiral Lagrangian for open-charm mesons

The chiral SU(3) Lagrangian for the ground-state charmed mesons has been constructed in
[10, 11, 12, 9], with the anti-triplet fields, D and Dµν , of charmed mesons with JP = 0− and
JP = 1− quantum numbers. The terms relevant for the pseudoscalar D-meson masses are [9]

L = (∂̂µD)(∂̂ µD̄)−M2 DD̄+2gP
{

Dµν U µ (∂̂ νD̄)− (∂̂ νD)U µ D̄µν

}
−
(
4c0−2c1

)
DD̄ tr χ+−2c1 D χ+ D̄+ 4

(
2c2 + c3

)
DD̄ tr

(
Uµ U µ†)−4c3 DUµ U µ† D̄

+
(
4c4 +2c5

)
(∂̂µD)(∂̂νD̄) tr

[
U µ ,Uν†]

+
/M2−2c5 (∂̂µD)

[
U µ ,Uν†]

+
(∂̂νD̄)/M2 , (2.1)
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H HR

π, K, η

Figure 1: The bubble-loop correction to the D-meson masses

where

Uµ = 1
2 e−i Φ

2 f

(
∂µ ei Φ

f

)
e−i Φ

2 f , Γµ = 1
2 e−i Φ

2 f ∂µ e+i Φ

2 f + 1
2 e+i Φ

2 f ∂µ e−i Φ

2 f ,

χ± = 1
2

(
e+i Φ

2 f χ0 e+i Φ

2 f ± e−i Φ

2 f χ0 e−i Φ

2 f

)
, χ0 = 2B0 diag(m,m,ms) ,

∂̂µD̄ = ∂µ D̄+Γµ D̄ , ∂̂µD = ∂µ D−DΓµ . (2.2)

The quark masses enter via the χ0 field (with m = (mu +md)/2) and the octet of the Goldstone
bosons is encoded into the 3×3 matrix Φ. The parameter M measures the mass of the D mesons
in the chiral limit, provided that a suitable renormalization scheme is applied [8, 9]. The 3-point
vertex proportional to gP induces bubble-loop corrections to D-meson masses, where the hadronic
decay width of the D∗-meson implies |gP| = 0.57± 0.07 [12]. The counter terms proportional to
c0 and c1 contribute to the D-meson masses at both tree and one-loop level. The other counter
terms c2−5 define their tadpole corrections. The symmetry breaking counter terms involving two
χ+ fields are not shown in (2.3) but are systematically considered in [9]. Further terms with the
vector D∗ fields are listed in [9].

The low-energy constant (LEC) do not only contribute to D-meson masses but also to sublead-
ing order corrections in the scattering processes between the D mesons and Goldstone bosons. The
covariant derivative ∂̂µ in the kinetic term of the Lagrangian (2.3) generates the leading order two-
body chiral interaction, recognized as the Weinberg-Tomozawa term. While this interaction does
not modify the D-meson masses it provides the leading order contribution to such s-wave scatter-
ing processes. Its interaction strength is determined by a single parameter f , the chiral SU(3) limit
value of the pion-decay constant. At chiral order Q2 the LEC c0−5 turn relevant for the scattering
processes. Further terms at chiral order Q3 were introduced in [13],

L (3) = 4g1 D [χ−,Uν ]−∂̂
ν D̄/M−4g2 D

(
[Uµ , [∂̂ν ,U µ ]−]−+[Uµ , [∂̂

µ ,Uν ]−]−
)

∂̂
νD̄/M

−4g3 D [Uµ , [∂̂ν ,Uρ ]−]− [∂̂
µ , [∂̂ ν , ∂̂

ρ ]+]+D̄/M3 +h.c. . (2.3)

While the LEC gi in (2.3), do not contribute to the charmed-meson masses, they imply specific
contributions to the two-body coupled-channel interaction kernel.

3. Chiral corrections to the charmed meson masses

Given the chiral Lagrangian, the masses of the charmed mesons of type H in either JP = 0−

or JP = 1− are determined by the set of coupled and non-linear equations

M2
H −Π

(0)
H −Π

2−χ

H −Π
4−χ

H −Π
tadpole
H −Π

bubble
H /ZH = 0 , (3.1)
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where the chiral expansion is truncated at the one-loop level. The term Π
(0)
H introduces the chiral

SU(3) limit of the D-meson and D∗-meson masses. It is either M2 or (M+∆)2 in our notation. The
Π

2−χ

H and Π
4−χ

H contributions are from Lagrangian terms with either one or two χ+ fields. While
the tadpole Π

tadpole
H is implied by c0−5, the bubble Πbubble

H is proportional to g2
P. The wave-function

renormalization factor ZH in (3.1) is introduced with

ZH −1 =
∂

∂M2
H

Π
bubble
H . (3.2)

As was emphasized in [9] only with (3.2) it is justified to use a tree-level estimate for gP in (3.1).
The bubble function Πbubble

H depends on the internal meson masses mQ (Goldstone boson
masses) and MR (D-meson or D∗-meson masses) as well as the external charmed-meson mass
MH . Note that in a conventional χPT approach such masses would be replaced by their leading
chiral moments, the number of which depending on the target accuracy of the computation. Within
dimensional regularization it is straightforward to find expressions for Πbubble

H . It is convenient to
organize such a computation in terms of the Passarino-Veltman reduction scheme [14], where in
this case the result is presented in terms of scalar tadpoles, IQ and IR, and a scalar bubble loop
function IQR. Such a result is at odds with the expectation from dimensional counting rules. There
are various methods how to set up renormalization as to have the counting rules realized in a man-
ifest manner. As demonstrated in [15], given the Passarino-Veltman scheme it suffices to devise a
suitable subtraction scheme for the scalar loop integrals.

In a realization of this scheme [8, 9] all terms proportional to a heavy tadpole IR must be
dropped. In addition the renormalized scalar bubble takes the form

ĪQR =−1− γH
R

16π2 +
1

16π2

m2
Q

M2
R−m2

Q
log

m2
Q

M2
R
+
∫

∞

(mQ+MR)2

ds
8π2

p2

s3/2

pQR(s)
s− p2

∣∣∣∣
p2=M2

H

,

p2
QR(s) =

s
4
−

M2
R +m2

Q

2
+

(M2
R−m2

Q)
2

4s
, γ

H
R =− lim

m,ms→0

M2
R−M2

H

M2
H

log
∣∣∣∣M2

R−M2
H

M2
R

∣∣∣∣ , (3.3)

where we wish to direct the reader’s attention to the subtraction term γH
R in (3.3). In the limit of

an infinite charm quark mass it follows γH
R → 0. Such a term is required as to arrive at consistent

results in the chiral domain with mQ < ∆ [8]. It is emphasized that the renormalized scalar bubble
does not depend on the renormalization scale µ , which enters the result exclusively via the tadpole
terms

ĪQ =
m2

Q

(4π)2 log
m2

Q

µ2 . (3.4)

In our scheme any such contribution proportional to ĪQ is absorbed into the tadpole term Π
tadpole
H

with

cr
2 = c2 +

1
8

g2
P , cr

3 = c3−
1
4

g2
P . (3.5)

As a consequence Πbubble
H and ZH do not depend on the renormalization scale µ . Altogether our

mass equation (3.1) is invariant under any change of µ . This is so since the terms Π
4−χ

H are cast

3
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Figure 2: Charmed meson masses in the flavour limit as a function of the pion mass [9]. The counting rules
(3.6) are used.

into the unique form such that the µ dependence from Π
tadpole
H is balanced exactly [9]. The rewrite

involves the quark masses but also the on-shell meson masses mπ ,mK and mη .
We now scrutinize chiral expansion strategies of the renormalized bubble loop function. Fol-

lowing the conventional scheme introduced by Banerjee and collaborators [16, 17] the counting
rules

∆∼ mQ ∼ Q , ∆Q =
√

∆2−m2
Q ∼ Q ,

∆

M
∼ Q , (3.6)

are set. Detailed expressions based on (3.6) are collected in [9]. In the chiral domain with mQ < ∆

a further expansion may be applied. It is clear, however, that any expansion that rests on mQ <

∆ cannot be applicable at the physical point. Despite the attempt to establish a scheme that is
applicable at mQ ' ∆, the Fig. 2 illustrates that the counting ansatz (3.6) is futile, at least in any
application that rests on a few leading order terms.

How can we overcome this chiral wall? Any chiral expansion strategy must deal with a de-
composition of the scalar bubble ĪQR into its chiral moments. We do so first in the particular case
with MH = MR. In Fig. 3 the bubble is plotted as a function of x = mQ/MH . The analytic structure
of this function was scrutinized in [8].

(4π)2ĪQR =−π

√
x2 f1(x2)+ x2 f2(x2)− 1

2
x2 f3(x2) logx2 , (3.7)

where each of the functions fn(x2) with fn(0) = 1 was shown to be analytic in the circle with
|x|< 2. Thus they can be expanded around x = 0 within the convergence domain |x|< 2. The first
few moments read

(4π)2 ĪQR =−
{

1− 1
8

x2− 1
128

x4− 1
1024

x6 +O(x8)
}

π

√
x2

+
{

1− 1
12

x2− 1
120

x4− 1
840

x6 +O(x8)
}

x2

− 1
2

x2 logx2 . (3.8)
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Figure 3: The bubble (4π)2 ĪQR, plotted as a function of x = mQ/MH with MR = MH (solid line). Different
broken lines "1-4" represent different truncations made in the expansions of fn, recorded in (3.8).

A significant cancellation amongst the three terms fn is observed. This is a consequence of the
analytic structure of the bubble loop. Once the correlation in (3.8) is kept, the expansion converges
rapidly up to the Goldstone-boson mass as large as mQ = 2MH . This is illustrated in Fig. 3, where
the solid line (full result) is confronted with the four cases where each of the fn(x3) is approximated
by one, two, three or four terms.

In the standard χPT approach the correlation (3.8) is not kept, and in turn the expansion has
a sizeable oscillatory part. This is the source of the rather controversial convergence property of a
conventional chiral expansion of hadron masses. A significant improvement is obtained once the
expansion is set up in terms of on-shell masses. In this case it is possible to keep such correlations.
We propose an expansion along the power-counting rules

MR−MH

mQ
∼ Q ,

MR−MH

MH
∼ Q2 for H ‖ R ,

MR−MH

mQ
∼ Q0 ,

|MR−MH |−∆H

MH
∼ Q2 for H ⊥ R ,

∆Q =
√
(MH −MR)2−m2

Q ∼ Q with ∆H = ∆MH lim
mu,d,s→0

1
MH

, (3.9)

as properly formulated in terms of on-shell meson masses [8]. In (3.9) we use a notation H ‖ R
requesting H,R ∈ [0−] or H,R ∈ [1−]. Now, the bubble Πbubble

H can be decomposed in a convergent
manner from the chiral limit up to the physical point.

This is illustrated in the flavour limit with Fig. 4. In comparison with the corresponding
Fig. 2 a much improved convergence pattern is observed. Within the range 0 ≤ mπ < 600 MeV,
a quantitative reproduction of the bubble loop (solid line) is obtained. For the case where all the
masses take their physical values, the 3rd, 4th and 5th components of the bubble loop for D and D∗

are listed in Tab. 1. We observe that the effects higher than O(Q4) are of a few MeV only.

4. Fit to QCD lattice data

We consider lattice results for charmed meson masses from 5 lattice groups. On ETMC,
PACS-CS and HSC ensembles pseudoscalar and vector D-meson masses are available [5, 1, 4, 6].

5
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Figure 4: Charmed meson masses in the flavour limit as a function of the pion mass. The full result is
shown by a solid line, while the truncated results up to Q3−Q5 according to the power counting (3.9) are
illustrated with broken lines.

In contrast, only pseudoscalar masses are available on the lattice setups from HPQCD and LHPC
[2, 3]. On each lattice ensemble we solve the set of four coupled and non-linear equations where
finite volume effects are taken into account [18]. A non-standard scale setting is performed by the
request that the four D-mesons reach their isospin averaged empirical values at the physical point.
In order to reduce the impact of a possible offset in the charm quark mass and discretization effects
we consider only the mass splittings of the charmed mesons in our fit. The residual systematic
error for the charmed-meson masses of about 5 MeV was estimated by the condition such that the
χ2 per data point turns close to one. It is added in quadrature to the statistical error as given by the
lattice groups.

On a given ensemble the quark masses, m = (mu +md)/2 and ms, are determined from the
lattice values of the pion and kaon masses. For Gasser and Leutwyler constants L4− 2L6 and
L5−2L8 we derived particular estimates in [9]. Our physical quark-mass ratio ms/m is compatible
with the latest result of ETMC [19] with ms/m = 26.66(32). Our ratios compare well with lattice
results off the physical point in the few cases where they are available even though they did not
enter our chisquare function [9]

In Tab. 2 we recall four sets of LEC from [9]. All four scenarios include not only the charmed
meson masses, but also the s-wave scattering lengths [3]. In addition, Fit 2-4 are adjusted to

H Π̄bubble
H /(2MH) Π̄

bubble−3
H /(2MH) Π̄

bubble−4
H /(2MH) Π̄

bubble−5
H /(2MH)

D -50.2 MeV -48.5 MeV -2.8 MeV 1.1 MeV

Ds -65.6 MeV -88.3 MeV 20.1 MeV 2.9 MeV

D∗ -113.4 MeV -99.5 MeV -17.1 MeV 3.1 MeV

D∗s -166.1 MeV -197.5 MeV 26.3 MeV 6.6 MeV

Table 1: The decomposition of the bubbles according to (3.9). We use M = 1907.4 MeV and ∆= 191.7 MeV.

6
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Fit 1 Fit 2 Fit 3 Fit 4

M [GeV] 1.8762 1.9382 1.9089 1.8846

c0 0.2270 0.3457 0.2957 0.3002
c1 0.6703 0.9076 0.8765 0.8880
c2 -0.6031 -2.2299 -1.6630 -1.3452
c3 1.2062 4.5768 3.3260 3.0206
c4 0.3644 2.0012 1.2436 0.9122
c5 -0.7287 -4.1445 -2.4873 -2.1393

g1 [GeV−1] 0 0 0.4276 0.4407
g2 [GeV−1] 0 0 1.0318 0.8788
g3 [GeV−1] 0 0 0.2772 0.2003

Table 2: The low-energy constants (LEC) from four fit scenarios as explained in [9]. Each parameter set
reproduces the isospin average of the empirical D-meson and D∗-meson masses from the PDG. The value
f = 92.4 MeV was used in [9].

the s-wave πD phase shifts on a HSC ensemble[6]. Fit 1 and 3 impose additional constraints
from large-Nc QCD with c2 = −c3/2 and c4 = −c5/2. Given the LEC of Tab. 2 we computed
the coupled-channel s-wave scattering amplitudes in all isospin-strangeness sectors (I,S). In this
contribution we focus on the sector with (I,S) = (0,1). A most remarkable prediction of chiral
dynamics is the formation of the D∗s0(2317) as a coupled-channel KD and ηDs state [10]. The s-
channel unitarity is implemented according to [20, 21]. This approach relies on a renormalization
condition where the unitarized amplitude matches the coupled-channel interaction kernel at a given
matching scale µM. If it is chosen to be close to the center of the Mandelstam triangle s- and u-
channel unitarized amplitudes can be matched smoothly in the vicinity of the matching point µM

as is expected from the crossing symmetry condition. Small variations around the natural value of
µM as suggested in [10] may be used to access the uncertainty in the unitarization process. Given
such a framework the mass of D∗s0(2317) is well predicted with a rather small uncertainty in its
mass even in a leading order computation.

On the other hand, the isospin-violating width of D∗s0(2317) via the decay process D∗s0(2317)→
π0Ds depends sensitively on details of the dynamical scenario [22, 12]. The leading order Weinberg-
Tomozawa interaction suggests the width to be 75 keV [12]. A first estimate of the impact of
chiral corrections suggested a much larger width of 140 keV [12]. An improved estimate of
(133± 22) keV is based on first lattice results on some s-wave lengths lengths [3]. Given our
fit scenarios we confirm that the mass of D∗s0(2317) is recovered within a small variation of the
natural matching scale ∆µM =±0.1 GeV for all the four fits. We emphasize that in none of the four
chisquare functions we used in our fits the mass of the D∗s0(2317) entered. In Tab. 3, we display
the predictions of the hadronic width of the D∗s0(2317) from the four fits [9]. The results depend on
the choice of the π0−η mixing angle ε . While in the previous study [12], the value ε = 0.010(1)
was used, the recent lattice study suggests ε = 0.0122(18)[19]. We provide predictions for both
values of ε in Tab. 3. With ε = 0.0122(18), we arrive at our estimate for the width of D∗s0(2317)

7
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Fit 1 Fit 2 Fit 3 Fit 4 ε

ΓD∗s0(2317)→π0Ds
[keV] 61.1 54.1 88.6 80.1 0.0100

74.6 68.4 115.8 104.4 0.0122

Table 3: Prediction for the isospin violating decay width of the D∗s0(2317) in the four fit scenarios of Tab. 2.

as (104− 116) keV, taking into account the results for the πD scattering phase shifts on a HSC
ensemble.

5. Summary

We studied the chiral extrapolation of charmed meson masses based on the three-flavour chiral
Lagrangian. It was illustrated that once the chiral expansion is organized in terms of on-shell meson
masses a well convergent expansion is obtained that can be applied from the chiral limit to the
physical point faithfully. The framework was applied to the data on charmed meson masses with
J = 0− and JP = 1− based on 5 different lattice setups from ETMC, PACS-CS, HSC, HPQCD
and LHPC. Additional constraints from some s-wave scattering lengths within the LHPC setup and
first results on a HSC ensemble for the πD and η D scattering phase shifts were imposed. Four
sets of low-energy constants were discussed, two of them provide an excellent reproduction of all
considered lattice data.

The implication of higher order counter terms in the coupled-channel dynamics involving D-
mesons was discussed at hand of the (I,S) = (0,1) sector. Our predicted range for the isospin
violating decay width of the D∗s0(2317) is (104−116) keV. This magnitude is within the expected
resolution of the PANDA experiment at FAIR. A measurement of this width is important since it
provides more insight into the chiral dyanmics of the open-charm sector of QCD. The size of the
chiral correction terms is crucially linked to the fate of possible flavour exotic open-charm meson
states.

References

[1] D. Mohler and R. Woloshyn, D and Ds meson spectroscopy, Phys.Rev. D84 (2011) 054505
[1103.5506].

[2] H. Na, C. T. Davies, E. Follana, G. P. Lepage and J. Shigemitsu, |Vcd | from D Meson Leptonic Decays,
Phys.Rev. D86 (2012) 054510 [1206.4936].

[3] L. Liu, K. Orginos, F.-K. Guo, C. Hanhart and U.-G. Meißner, Interactions of Charmed Mesons with
Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D∗s0(2317),
Phys.Rev. D87 (2013) 014508 [1208.4535].

[4] C. Lang, L. Leskovec, D. Mohler, S. Prelovsek and R. Woloshyn, Ds mesons with DK and D∗K
scattering near threshold, Phys.Rev. D90 (2014) 034510 [1403.8103].

[5] M. Kalinowski and M. Wagner, Masses of D mesons, Ds mesons and charmonium states from twisted
mass lattice QCD, Phys. Rev. D92 (2015) 094508 [1509.02396].

8

https://doi.org/10.1103/PhysRevD.84.054505
https://arxiv.org/abs/1103.5506
https://doi.org/10.1103/PhysRevD.86.054510
https://arxiv.org/abs/1206.4936
https://doi.org/10.1103/PhysRevD.87.014508
https://arxiv.org/abs/1208.4535
https://doi.org/10.1103/PhysRevD.90.034510
https://arxiv.org/abs/1403.8103
https://doi.org/10.1103/PhysRevD.92.094508
https://arxiv.org/abs/1509.02396


P
o
S
(
C
D
2
0
1
8
)
0
7
5

On chiral extrapolations for charmed meson masses Matthias F. M. Lutz

[6] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas and D. J. Wilson, Coupled-Channel Dπ , Dη and
DsK̄ Scattering from Lattice QCD, JHEP 10 (2016) 011 [1607.07093].

[7] M. F. M. Lutz et al., Resonances in QCD, Nucl. Phys. A948 (2016) 93 [1511.09353].

[8] M. F. M. Lutz, Y. Heo and X.-Y. Guo, On the convergence of the chiral expansion for the baryon
ground-state masses, Nucl. Phys. A977 (2018) 146 [1801.06417].

[9] X.-Y. Guo, Y. Heo and M. F. M. Lutz, On chiral extrapolations of charmed meson masses and
coupled-channel reaction dynamics, Phys. Rev. D98 (2018) 014510 [1801.10122].

[10] E. Kolomeitsev and M. F. M. Lutz, On Heavy light meson resonances and chiral symmetry, Phys.Lett.
B582 (2004) 39 [hep-ph/0307133].

[11] J. Hofmann and M. F. M. Lutz, Open charm meson resonances with negative strangeness, Nucl. Phys.
A733 (2004) 142 [hep-ph/0308263].

[12] M. F. M. Lutz and M. Soyeur, Radiative and isospin-violating decays of D(s)-mesons in the
hadrogenesis conjecture, Nucl.Phys. A813 (2008) 14 [0710.1545].

[13] M.-L. Du, F.-K. Guo, U.-G. Meißner and D.-L. Yao, Study of open-charm 0+ states in unitarized
chiral effective theory with one-loop potentials, Eur. Phys. J. C77 (2017) 728 [1703.10836].

[14] G. Passarino and M. J. G. Veltman, One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the
Weinberg Model, Nucl. Phys. B160 (1979) 151.

[15] A. Semke and M. F. M. Lutz, Baryon self energies in the chiral loop expansion, Nucl.Phys. A778
(2006) 153 [nucl-th/0511061].

[16] M. Banerjee and J. Milana, Baryon mass splittings in chiral perturbation theory, Phys.Rev. D52
(1995) 6451 [hep-ph/9410398].

[17] M. Banerjee and J. Milana, The Decuplet revisited in chi(PT), Phys.Rev. D54 (1996) 5804
[hep-ph/9508340].

[18] M. F. M. Lutz, R. Bavontaweepanya, C. Kobdaj and K. Schwarz, Finite volume effects in the chiral
extrapolation of baryon masses, Phys. Rev. D90 (2014) 054505 [1401.7805].

[19] EUROPEAN TWISTED MASS collaboration, N. Carrasco et al., Up, down, strange and charm quark
masses with N f = 2+1+1 twisted mass lattice QCD, Nucl. Phys. B887 (2014) 19 [1403.4504].

[20] M. F. M. Lutz and E. Kolomeitsev, Relativistic chiral SU(3) symmetry, large N(c) sum rules and
meson baryon scattering, Nucl.Phys. A700 (2002) 193 [nucl-th/0105042].

[21] M. F. M. Lutz and E. E. Kolomeitsev, On meson resonances and chiral symmetry, Nucl.Phys. A730
(2004) 392 [nucl-th/0307039].

[22] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y.-L. Ma, Strong and radiative decays of the
D(s0)*(2317) meson in the DK-molecule picture, Phys. Rev. D76 (2007) 014005 [0705.0254].

9

https://doi.org/10.1007/JHEP10(2016)011
https://arxiv.org/abs/1607.07093
https://doi.org/10.1016/j.nuclphysa.2016.01.070
https://arxiv.org/abs/1511.09353
https://doi.org/10.1016/j.nuclphysa.2018.05.007
https://arxiv.org/abs/1801.06417
https://doi.org/10.1103/PhysRevD.98.014510
https://arxiv.org/abs/1801.10122
https://doi.org/10.1016/j.physletb.2003.10.118
https://doi.org/10.1016/j.physletb.2003.10.118
https://arxiv.org/abs/hep-ph/0307133
https://doi.org/10.1016/j.nuclphysa.2003.12.013
https://doi.org/10.1016/j.nuclphysa.2003.12.013
https://arxiv.org/abs/hep-ph/0308263
https://doi.org/10.1016/j.nuclphysa.2008.09.003
https://arxiv.org/abs/0710.1545
https://doi.org/10.1140/epjc/s10052-017-5287-6
https://arxiv.org/abs/1703.10836
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/j.nuclphysa.2006.07.043
https://doi.org/10.1016/j.nuclphysa.2006.07.043
https://arxiv.org/abs/nucl-th/0511061
https://doi.org/10.1103/PhysRevD.52.6451
https://doi.org/10.1103/PhysRevD.52.6451
https://arxiv.org/abs/hep-ph/9410398
https://doi.org/10.1103/PhysRevD.54.5804
https://arxiv.org/abs/hep-ph/9508340
https://doi.org/10.1103/PhysRevD.90.054505
https://arxiv.org/abs/1401.7805
https://doi.org/10.1016/j.nuclphysb.2014.07.025
https://arxiv.org/abs/1403.4504
https://doi.org/10.1016/S0375-9474(01)01312-4
https://arxiv.org/abs/nucl-th/0105042
https://doi.org/10.1016/j.nuclphysa.2003.11.009
https://doi.org/10.1016/j.nuclphysa.2003.11.009
https://arxiv.org/abs/nucl-th/0307039
https://doi.org/10.1103/PhysRevD.76.014005
https://arxiv.org/abs/0705.0254

