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Using the formalism of the light-cone wave function in perturbative QCD together with the hybrid
factorization, we compute the cross-section for three particle production at forward rapidities in
proton-nucleus collisions. In this picture, the three produced partons — a quark accompanied by
a gluon pair, or two quarks plus one antiquark — are all generated via one or two successive split-
tings of a quark from the incoming proton, that was originally collinear with the latter. The three
partons are put on-shell by their scattering off the nuclear target, described as Lorentz-contracted
shockwave. We explicitly compute the three-parton Fock space components of the light-cone
wave function of the incoming quark and its outgoing state, which encodes the information both
on the evolution in time as well as the scattering process. This outgoing state is also an ingredient
for other interesting calculations, like the next-to-leading order correction to the cross-section for
the production of a pair of jets.
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1. Introduction to Gluon Saturation

Particle production in proton-nucleus collisions at forward rapidities (in the proton fragmen-
tation region) represents an important source of information about the small-x part of the nuclear
wavefunction, where gluon occupation numbers are high and non-linear effects like gluon satu-
ration and multiple scattering are expected to be important. Within perturbative QCD, the cor-
responding cross-sections can be computed using the Colour Glass Condensate (CGC) effective
theory [1], which is currently known to next-to-leading order (NLO) accuracy (at least for the
high-energy evolution and for specific scattering processes), together with the so-called “hybrid
factorization” [2]. The physical picture underlying this factorization is that the “forward” jets
(or hadrons) observed in the final state are generally produced via the fragmentation of a single
collinear parton from the incoming proton, which carries a large fraction xp ∼O(1) of the longitu-
dinal momentum of the proton and here is assumed to be a quark.

Using this approach, one has so far computed the cross-section for single inclusive hadron
production, first to leading-order (LO) accuracy [3, 4, 5] and then to NLO [6, 7, 8, 9], and that for
di-jet production only at LO [10, 11, 12, 13, 14]. The results thus obtained compare quite well with
the phenomenology, for both the single inclusive spectra [15, 16, 17, 18, 19, 2, 20, 21, 22, 23, 24]
and the di-jet production[25].

The aim of this proceeding is to explain how to compute multi-particle production cross sec-
tions in proton-nucleus collisions at forward rapidities, that is, in the fragmentation region of the
proton projectile. Our dominant contribution comes from the process where a valence quark from
the proton, possibly accompanied by its radiation products, scatters off the gluon distribution in
the nucleus and then emerges in the final state. We shall compute this process within perturba-
tive QCD, so in particular we shall ignore confinement: our ‘final state’ will be built with partons
(quarks and gluons), rather than physical hadrons.

2. The Outgoing State Formalism

In order to be able to describe a scattering process we should understand both how the incom-
ing state evolves with time, and how does it interact with the target. The state which encodes the
information about the time evolution of an initial bare quark state

∣∣qα

λ
(q+, qqq)

〉
(α and λ denote the

color and polarization indices, while q is its momenta) is given by:∣∣qα

λ
(q+, qqq)

〉
in ≡ U(0,−∞)

∣∣qα

λ
(q+, qqq)

〉
(2.1)

where U is a unitary evolution operator, defied by:

U(t, t0) = T exp
{
−i
∫ t

t0
dt1 HI(t1)

}
(2.2)

At leading order, as the incoming bare quark WF evolves with time, it can emit a gluon (we treat
the kinematics exactly, assuming no approximation for the emission vertices). The reader can find
the result for the LO incoming bare quark WF as well as the cross section for the forward dijet
production in [11]. As a result of the collision, the partonic system also acquires a total transverse
momentum of the order of the saturation momentum in the nucleus. In the high-energy regime
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of interest, the effects of multiple scattering can be resumed to all orders by using the eikonal
approximation (a parton from the projectile does not get deflected, but merely acquires a color
rotation.) This amounts to associating a Wilson line [26] built with the colour field of the target
to each parton from the projectile (the operator which assigns the Wilson lines for each parton is
denoted here by Ŝ). While at leading order the procedure to insert the shockwave is straightforward,
it cannot be easily generalized for higher orders. An elegant and systematical way to generate at all
the different contributions from the possible locations in which the interaction may occur is given
by the expression for the outgoing state:∣∣qα

λ

〉
out ≡ U(∞, 0) ŜU(0,−∞)

∣∣qα

λ

〉
. (2.3)

The last expression can be computed perturbativly:∣∣qα

λ

〉
out =

∣∣qα

λ

〉
+
∣∣qα

λ

〉(g)
out +

∣∣qα

λ

〉(g2)

out + . . . , (2.4)

Since here we are looking for the situation in which we have at least three partons at the final state,
we have to compute the outgoing state up to order g2:

∣∣qα

λ

〉(g)
out = −∑

i 6= f
| f 〉〈 f |S| i〉 〈i |Hint| in〉

Ei−Ein
+ ∑

i6= f
| f 〉 〈 f |Hint| i〉

E f −Ei
〈i |S| in〉 , (2.5)

∣∣qα

λ

〉(g2)

out = ∑
i 6=in, j 6=in

| f 〉〈 f |S| j〉 〈 j |Hint| i〉 〈i |Hint| in〉
(E j−Ein)(Ei−Ein)

+ ∑
i 6= j, j 6= f

| f 〉 〈 f |Hint| j〉 〈 j |Hint| i〉
(E f −E j)(E f −Ei)

〈i |S| in〉

− ∑
i 6=in, j 6= f

| f 〉 〈 f |Hint| j〉
E f −E j

〈 j |S| i〉 〈i |Hint| in〉
Ei−Ein

. (2.6)

where Hint denotes the interaction part of the QCD Hamiltonian in light-cone gauge, and we should
sum over all the possible states |i〉, | j〉, and | f 〉, of our Fock space (the Fock space here consists of
the quark state, quark and a gluon state, quark and two gluons state, and two quarks and an anti-
quark). The respective energies for the states mentioned are denoted by Ei,E j,E f , and the state
|in〉 denotes the incoming state (which in our case is a bare quark state). After summing over the
different states, it can be seen that the state in eq. (2.6) has the following structure:∣∣qα

λ

〉(g2)

out ' ẐNLO

∣∣qα

λ

〉
+
∣∣ψα

λ

〉
qg +

∣∣ψα

λ

〉
qqq +

∣∣ψα

λ

〉
qgg . (2.7)

Where ẐNLO accounts for the normalization of the WF and the partons produced at the final state
appear as a subscript.

2.1 Computing the Outgoing State

As mentioned in the introduction, out interest is to compute the leading-order cross-section
for producing three partons in the final state. In order to demonstrate the method, it is enough
to focus on the case in which two quarks and an anti-quark are produced at the final state (along
with that contribution we can also have one quark together with two additional gluons that will not
be discussed here). To lowest order in perturbation theory, the incoming state built with these 3
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Figure 1: The three possible configurations for the interplay between the quark evolution and the scattering,
for a final partonic state built with three quarks and a propagating intermediate gluon: (a) initial-state evolu-
tion, (b) mixed (the gluon emission occurs prior to scattering, but its splitting happens after the scattering),
(c) final-state evolution.

(bare) partons involves either one or two emission vertices, which we denote here as regular and
instantaneous emission (in the instantaneous channel an intermediate gluon is not created, and the
quark anti-quark pair are emitted directly from the incoming state.) The total contribution is a sum
of the two contributions,

∣∣ψα

λ

〉
qqq ≡

∣∣ψα

λ

〉inst
qqq +

∣∣ψα

λ

〉reg
qqq. In what follows we shall deal only with

the contribution from the regular emission. The contribution from this channel to the outgoing state
in eq. (2.6) is given by the following expression [27]:

∣∣ψα

λ
(q+, www)

〉reg
qqq̄ = −

∫
xxx,zzz,zzz′

∫ 1

0
dϑ dξ

g2 ϕ il
λ2λ3

(ξ )φ
i j
λ1λ

(ϑ)ZZZl (XXX j +ξ ZZZ j) q+

16π3 (XXX +ξ ZZZ)2 ZZZ2

×
[
Θ1V ρδ (zzz′) ta

δε
V †ερ(zzz)V σβ (xxx) ta

βα
+ Θ2 ta

ρρ ta
σβ

V βα(www)− tb
ρρ V σβ (xxx)Uba(yyy) ta

βα

]
×δ

(2) (www−CCC)
∣∣∣q̄ρ

λ3
((1−ξ )ϑq+, zzz)qρ

λ2
(ξ ϑq+, zzz′)qσ

λ1
((1−ϑ)q+,xxx)

〉
, (2.8)

where xxx, and zzz′ denote the transverse coordinates of two final quarks, while zzz is the transverse coor-
dinate of the anti-quark. The transverse position of the intermediate gluon yyy, and the corresponding
position www of the incoming quarks are given by

yyy ≡ ξ zzz′+(1−ξ )zzz ; www = (1−ϑ)xxx + ξ ϑzzz′ + (1−ξ )ϑzzz. (2.9)

For compactness we also define:

XXX ≡ xxx− zzz; ZZZ ≡ zzz − zzz′, (2.10)

Uab(xxx) and V αβ (xxx) are Wilson lines in the adjoint and fundamental representations, and

Θ1 ≡
(1−ϑ)(XXX +ξ ZZZ)2

(1−ϑ)(XXX +ξ ZZZ)2 + ξ (1−ξ )ZZZ2
; Θ2 ≡

ξ (1−ξ )ZZZ2

(1−ϑ)(XXX +ξ ZZZ)2 + ξ (1−ξ )ZZZ2
, (2.11)

are fractions between 0 and 1. Note that the three terms inside the square brackets of Eq. (2.8) have
a different color structure corresponding to the three possibilities for the insertion of the shockwave,
as depicted on Fig. 1.
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3. The Trijet Cross Section

The cross-section for partons–nucleus scattering is obtained by averaging number density op-
erators (defined below) over all the colour field configurations in the target with the CGC weight
function [1]. In order to pass from the partonic cross section to a cross section which involves
hadrons, it must be convoluted with the quark distribution function of the proton and the fragmen-
tation functions for partons fragmenting into hadrons, or jets.

Within the hybrid factorization [2], the cross-section for producing three jets at forward rapidi-
ties in proton-nucleus collisions and to leading order in pQCD is simply obtained by convoluting
the respective partonic cross-section with the proton parton distribution functions for the partons
which have initiated the process.

dσ pA→3 jet+X

d3q1 d3q2 d3q3
=
∫

dxp q(xp,µ
2)

(
dσqA→qgg+X

d3q1 d3q2 d3q3
+

dσqA→qqq+X

d3q1 d3q2 d3q3

)
. (3.1)

Here, q1, q2, q3 are the momenta of the measured partons. q(xp,µ
2) is the quark distribution

function of the proton evaluated for a longitudinal momentum fraction xp = q+/Q+ (with Q+ the
proton longitudinal momentum) and for a transverse (or virtuality) scale µ2. The value of xp is
actually fixed by the δ -function implicit in the partonic cross-sections and which expresses the
conservation of longitudinal momentum (q+ = q+1 +q+2 +q+3 ).

The three-parton cross-sections in eq. (3.1) are in turn computed as expectation values over
the outgoing–state of the product of three number-density Fock space operators for bare partons:

dσqA→qqq+X

d3q1 d3q2 d3q3
≡ 1

2Nc L qqq
〈
ψ

α

λ
(q+, qqq = 0⊥)

∣∣ ˆNq(q1) ˆNq(q2) ˆNq(q3)
∣∣ψα

λ
(q+, qqq = 0⊥)

〉
qqq .

=
1

2Nc L

∫
www,www

qqq̄
〈
ψ

α

λ
(q+, www)

∣∣ ˆNq(q1) ˆNq(q2) ˆNq(q3)
∣∣ψα

λ
(q+, www)

〉
qqq̄ ,

(3.2)

where the number density operators for (bare) quarks, anti-quarks, and gluons are given by

ˆNq(p) ≡ 1
(2π)3 bα†

λ
(p)bα

λ
(p), ˆNg(k) ≡

1
(2π)3 aa†

i (k)aa
i (k). (3.3)

It should be mentioned that the factor 1/2Nc in eq. (3.2) accounts for the average over the colors
and polarizations of the initial quark. The factor 1/L, with L denoting the a priory infinite ex-
tension of the longitudinal axis, is needed to remove an ill-defined delta function expression the
conservation of the longitudinal momentum. The gluons contribution to the trijet cross section

dσqA→qgg+X

d3q1 d3q2 d3q3
is given similarily by replacing the quark and an anti-quark number density operators

by the corresponding gluonic ones (see figure 3).
The contribution of the channel qA → qqq + X to the trijet cross section, as given by eq.

(3.2), consists of four different parts. One of these parts involve the creation of a gluon in the
direct and conjugate amplitudes before and after the splitting to quark and anti-quark pair (denoted
by "reg-reg"). Another part involves the instantaneous creation of the quark anti-quark directly
from the incoming quark (denoted by "inst-inst"). The two remaining contributions correspond
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Figure 2: Three examples of diagrams which demonstrate the production of a quark antiquark pair via an
intermediate gluon in the direct and conjugate amplitudes. In total there are 9 such contributions.

Figure 3: Three examples of diagrams which demonstrate the production of two gluons. The two direct
contributions are shown in (a) and (b), in which the two gluons can be produced by the splitting of the origi-
nal gluon or by emitting a second one from the incoming quark. Contribution (c) represents the interference
between these contributions.

to the interference between the regular and instantaneous emissions (denoted by "reg-inst" and
"inst-reg"). Therefore, we can write the result in the following way:

dσqA→qqq+X

d3q1 d3q2 d3q3
=

dσqA→qqq+X

d3q1 d3q2 d3q3

∣∣∣∣
reg−reg

+2Re
dσqA→qqq+X

d3q1 d3q2 d3q3

∣∣∣∣
reg−inst

+
dσqA→qqq+X

d3q1 d3q2 d3q3

∣∣∣∣
inst−inst

.

(3.4)

In order to express the result for the first term in the last equation, one has to introduce two basic
gauge-invariant operators, known as dipole and baryon:

S (www, www) ≡ 1
Nc

tr
[
V †(www)V (www)

]
, Q (xxx, xxx, zzz, zzz) ≡ 1

Nc
tr
[
V †(xxx)V (xxx)V †(zzz)V (zzz)

]
. (3.5)

After inserting the result in eq. (2.6) to the definition of the cross section (3.2), and retaining
only the large Nc limit contributions, the result can be expressed solely in terms of the dipole and
quadropole:

dσqA→qqq+X

d3q1 d3q2 d3q3

∣∣∣∣
reg−reg

(3.6)

≡
α2

s Nc N f

256π5(q+)2 δ (q+−q+1 −q+2 −q+3 )
∫

x,z,z′,xxx,zzz,zzz′
e−iqqq1·(xxx−x)−iqqq2·(zzz−z̄zz)−iqqq3·(zzz′−z̄zz′)

×Kqqq
(
x, z, z′, xxx, zzz, zzz′

)[
Θ1 Θ1 Q(xxx, xxx, zzz′, zzz′)S (zzz, zzz) − Θ1 Q(xxx, xxx, yyy, zzz′)S (zzz, yyy)

−Θ1 Q(xxx, xxx, zzz′, yyy)S (yyy, zzz) + Θ2 Θ1 S (www, zzz)S (zzz′, xxx) + Θ1 Θ2 S (xxx, z′)S (z, www)

+Q(xxx, xxx, yyy, yyy)S (yyy, yyy)− Θ2 S (www, xxx)S (xxx, yyy) − Θ2 S (xxx, y)S (y, www) + Θ2 Θ2S (w, www)
]

+
(
q+1 ↔ q+2 , qqq1↔ qqq2

)
.
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