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The reconstruction and identification of hadronic objects has a wide variety of use-cases inside
the physics program of the LHC, ranging from Standard Model measurements and Higgs searches
up to the more exotic searches of boosted resonances. The CMS collaboration devoted a constant
effort in improving such tools in order to extend the analyses reach.
A review of the current status of the identification algorithms for hadronic taus, heavy flavour jets,
quark/gluon discrimination, and boosted resonances is presented together with their performance,
either measured on data or expected from simulation.
Special attention is devoted to novel techniques recently introduced, and their impact on the final
performance on the classification task.
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1. Introduction

The hadronic object reconstruction in CMS [1] always starts with a jet being clustered and
containing the decay products of the object of interest. The clustering algorithm of choice is the
anti-kT algorithm [2] with radius R = 0.4 for normal jets and R = 0.8 for the identification of
boosted object. After the jet clustering the identification can be divided into three main families:
the identification of hadronically decaying taus, the jet flavour identification, comprising not only
the heavy flavours, but quark/gluon discrimination as well, and the identification of boosted objects
such as boosted decays of the top quark (t → bqq̄), of vector bosons (W/Z → qq̄) and generic
resonances to a b-quark pair (X → bb̄).

The importance of these tools is shown by the great wealth of analyses exploiting these tech-
niques. Such analyses had a large impact in the HEP community in the last few years and a constant
struggle to improve and refine the tagging tools can have a positive impact on a large fraction of
the CMS physics program.

2. Hadronic tau identification

Hadronic tau identification still relies on the Hadron Plus Strip (HPS) [3] algorithm which
has been extremely successful during the Run I campaign, but few key changes have improved
the performance for the Run II data taking. The algorithm still aims to reconstruct the full de-
cay mode of the hadronic tau. The decay photons of the π0 are clustered into strips in the elec-
tromagnetic calorimeter. The tau decay is classified into single prong (τ± → π±ν), one prong
plus strip (covering both τ± → ρν → π±π0ν and τ± → a1ν → π±π0π0ν), and three prongs
(τ±→ a1ν → π±π±π∓ν). The main change in the identification algorithm with respect to Run I
is the size of the clustering ECAL strip which is now function of the e/γ pT to better follow the
contour of real taus, as shown by Fig. 1 and detailed in Ref. [4].

The identification of hadronic taus decaying from heavy resonances still relies mainly on the
isolation of the decay products. On top of the traditional cut-based approach a new multivariate
method combines the isolation with strip shape and lifetime information into a boosted decision
tree (BDT) to obtain a better performance as shown in Fig. 1.

The Z boson decays are used as standard candle to measure the efficiency and mis-identification
rates with respect to electrons and muons.

3. Jet flavour identification

3.1 Heavy flavours

Several marking features help identifying jets originating from heavy-flavour quarks. As the
open-charm and open-bottom hadrons contained in such jets have a significant lifetime, their decay
products will create tracks displaced with respect to the main primary vertex (PV), and they will
point to the same secondary vertex (SV). Moreover, the large branching fraction of such hadrons to
semi-leptonic modes will enhance the presence of soft muons and electrons in the jet. Depending of
which set of features is used to tag the jet, the classifiers are divided into track-based taggers (e.g.
the Jet Probability tagger), using only the track displacement information, combined taggers (e.g.
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Figure 1: From Ref. [4]. Left: Distance in ∆φ between the τh and e/γ , that are due to the tau decay products,
as a function of e/γ pT. A sample of simulated τh decays is used. The dotted point shows the 95% quantile
for the given bin, and the dashed lines represent the fitted function used in the algorithm to determine the
strip width. Right: Misidentification probability as a function of τh identification efficiency, evaluated using
H → ττ and QCD MC samples. The MVA-based discriminators are compared to that of the isolation sum
discriminators. The points correspond to working points of the discriminators.

CSVv2 and DeepCSV), which use track displacement and SV information, and super-combined
taggers (e.g. cMVAv2), which include the lepton information as well.

The large number of features used to achieve a competitive discrimination power requires the
use of more advanced machine learning techniques such as shallow Neural Networks (CSVv2),
deep Neural Networks (DeepCSV), and BDTs (cMVAv2). A more detailed description of the
features and techniques used is available in Ref. [5] and Ref. [6]. The current best performing
tagger is DeepCSV as shown in Fig. 2 by the ROC curves, computed on simulated tt̄ events, and
the data to simulation efficiency ratios.

DeepCSV uses four output nodes to properly classify jets containing one b-hadron, two b-
hadrons, one c-hadron, and light jets. This multi-class approach enables the classifier to be used
as a charm tagger as well, showing better performance than the charm tagger currently available in
CMS and firstly documented in Ref. [7].

The big performance and flexibility gains obtained using DNNs, sparked a lot of interested
on the subject leading to a detailed optimization study on the architecture of the DNN and on the
size of the input features. A preliminary result of such optimization is the new DeepFlavour tagger,
described in Ref. [8]. DeepFlavour takes as inputs a much larger set of input features (674 vs 68
of DeepCSV), divided into global features and features pertaining the charged candidates, neutral
candidates, and secondary vertices. Each group of features, with the exception of the global ones,
is passed though a set of convolutional filters that learn a compressed representation of the features
that is then passed to a dense architecture similar to DeepCSV. The more advanced architecture and
the large increase in input features results in a significant performance gain, even more pronounced
at high jet pT, as shown in Fig. 3.
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Figure 2: From Ref. [6]. Left: mis-identification probability of light jets (solid lines) and charm jets (dashed
lines) as a function of b-jet tagging efficiency for the three best-performing alorithms. Right: data to MC
simulation scale factors for b-jets for CSVv2 and DeepCSV, the SF compatibility among the homologous
working points of the two different algorithms shows that the performance gain observed on simulation is
retained in real data.
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Figure 3: From Ref. [8]. Left: ROC curves for b vs. c jets (dashed) and b vs. light jets (solid) for DeepCSV,
DeepFlavour and DeepFlavour without convolutional layers, the performance gain achieved by DeepFlavour
cannot be only explained with the additional inputs, but requires the better architecture as well. Right: ROC
curves for b vs. c jets (dashed) and b vs. light jets (solid) for DeepCSV (green) and DeepFlavour (red) for
jets with 150 GeV < pT < 300 GeV.

3.2 Quark-gluon jets discrimination

The discrimination between jets stemming from light quarks and from gluons is achieved by
combining three features sensitive to the jet particle multiplicity, shape and fragmentation function
within a likelihood discriminant as described in Ref. [9]. The performance on data of the classifier
is measured in dedicated Z+jets (quark-jets enriched) and dijet (gluon-jets enriched) regions. A
comparison of the tagger output in such regions is presented in Fig. 4

4. Boosted objects

With the increasing Lorentz boost of a resonance, its decay products become more and more
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Figure 4: From Ref. [9]. Data-MC comparison for the quark-gluon discriminant in Z+jets (left) and dijet
(right) events for jets in the central region with 80 < pT < 100 GeV. The data (black markers) are compared
to the MADGRAPH/PYTHIA simulation, on which the different components are shown: quarks (blue),
gluon (red) and unmatched/pileup (grey).

collimated, up until the point where, in case of hadronic decays, the two or more jets produced can-
not be resolved. In such cases a jet with a larger cone is reconstructed, in the attempt of clustering
the whole resonance decay.

The identification of boosted resonances relies heavily on techniques aimed at removing the
soft collinear radiation like SoftDrop [10, 11] and jet pruning [12], as well as the sub-jettines,
defined in Ref. [9]. The identification of boosted top decays additionally exploits the b-tagging of
the sub-jets.

Several approaches, mostly cut-based, are explored. One notable approach decorrelates the
tagger performance and the jet pT using the DDT method [13]. This method achieves a flat rejec-
tion power as function of jet pT, which is beneficial to the analyses background estimation. The
performance of the different boosted W-tagging working points if shown in Fig. 5.

5. Conclusions

As the reconstruction of hadronic objects is of paramount importance for the collaboration
physics program, more and more effort is put to refine and improve the performance and the impact
on the analysis of such tools. In this perspective the introduction of modern machine learning
techniques is showing a large impact potential in this field.
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