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The Standard Model (SM) predictions of the anomalous magnetic moment of the muon,
aµ = (gµ −2)/2, with gµ the muon gyromagnetic factor, and of the running electromagnetic cou-
pling constant, α(s), a crucial ingredient of electroweak theory, are limited in precision by hadronic
vacuum polarisation (HVP) contributions. The dominant hadronic terms can be calculated with a
combination of experimental cross-section data, involving e+e− annihilation to hadrons, and per-
turbative QCD. They are used to evaluate energy-squared dispersion integrals ranging from the
π0γ threshold to infinity. The kernels occurring in these integrals emphasise low photon virtuality,
owing to the 1/s descent of the cross-section, and, in case of aµ , to an additional 1/s suppres-
sion. In the latter case, about 74% of the lowest order hadronic contribution and 59% of the total
uncertainty-squared are given by the π+π−(γ) final state, while this channel amounts to only 12%
of the hadronic contribution to α(s) at s = m2

Z .

In this proceedings in common with that of PhiPsi 2017, we report an update, detailed in
Ref. [1], of the lowest-order hadronic contribution, ahad,LO

µ , to the muon magnetic anomaly, and
the hadronic contribution, ∆αhad(m2

Z), to α(s) at the Z-boson mass using newest e+e−→ hadrons
cross-section data.

Exclusive bare hadronic cross-section measurements are integrated up to 1.8 GeV over the rel-
evant dispersion kernels using the software package HVPTools [2]. In this update, 39 channels are
included, as compared to only 22 in our previous work from 2011 [3]. Channels having important
improvements (changes) are shown in Table 1.

For the dominant π+π− channel, the computation of the dispersion integral over the full π+π−

spectrum requires to extend the available data to the region between threshold and 0.3 GeV, for
which a fit as described in Ref. [2] is used. A tension between the BABAR and KLOE measure-
ments is observed at the above the ρ(770) peak region [1]. The local uncertainty rescaling applied
increased the combined ahad,LO

µ uncertainty by 15% in the channel. In spite of this problem, the
precision of the π+π− channel of the new reevaluation is improved by 9%, which includes recent
measurements from KLOE-2012 [4] and BESIII-2015 [5].

Channel ahad,LO
µ [10−10] 2017 ahad,LO

µ [10−10] 2011 δahad,LO
µ reduction

π+π− 507.14±1.13±2.20±0.75 507.80±1.22±2.50±0.56 −9%
2π+2π− 13.68±0.03±0.27±0.14 13.35±0.10±0.43±0.29 −42%
π+π−2π0 18.03±0.06±0.48±0.26 18.01±0.14±1.17±0.40 −56%
K+K− 22.81±0.24±0.28±0.17 21.63±0.27±0.58±0.36 −46%
K0

S K0
L 12.82±0.06±0.18±0.15 12.96±0.18±0.25±0.24 −38%

KK̄π 2.45±0.06±0.12±0.07 (2.39±0.07±0.12±0.08) −6%
KK̄2π 0.85±0.02±0.05±0.01 (1.35±0.09±0.38±0.03) −86%
Missing (%) 0.09±0.02 0.69±0.07
RQCD [1.8–3.7 GeV]uds 33.45±0.28±0.59dual 33.45±0.28
Sum 693.1±1.2±2.6±1.7±0.1Ψ±0.7QCD 692.3±1.4±3.1±2.4±0.2±0.3 −21%

Table 1: Comparison of the new evaluation with our previous one and their relative uncertainty reduction.
Where three (or more) uncertainties are given, the first is statistical, the second channel-specific systematic,
and the third common systematic, which is correlated with at least one another channel. For the contribution
computed from QCD, only the total uncertainties are given, which include effects from the αs uncertainty,
the truncation of the perturbative series at four loops, the FOPT vs. CIPT ambiguity, and quark mass uncer-
tainties. The additional uncertainty dubbed “dual” estimates possible quark-hadron duality violating effects
in the QCD estimate between 1.8 and 2.0 GeV.
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The 2π+2π− channel includes an updated measurement from BABAR-2012 [6] using its full
available data sample and a new measurement from CMD3-2017 [7]. The total uncertainty of 0.31
(in units of 10−10 unless otherwise specified) on the corresponding combined HVP contribution
is reduced by −42%. The precision of the π+π−2π0 channel is improved by 56% with the final
BABAR-2017 data [8] that have its systematic uncertainty reduced to 3.1% below 2.7 GeV from
about 10% in its preliminary version.

Including new measurements from BABAR-2013 [9] and SND-2016 [10] reduces the uncer-
tainty of the K+K− channel by −46%. However both data, in agreement with each other, show a
discrepancy with the former SND data that exceeds the quoted systematic uncertainty. The K0

S K0
L

channel has received two new data sets from BABAR-2014 [11] and CMD3-2016 [12]. The preci-
sion of this channel is improved by 38%.

In previous hadronic polarisation analyses the available exclusive e+e− → KK̄+pions data
were incomplete. Missing channels were constrained based on assumptions about the process
dynamics and isospin symmetry [3] leading to considerable uncertainty. This procedure became
unnecessary since the BABAR experiment produced cross-section results for three channels con-
tributing to the final state KK̄π and six channels contributing to KK̄ππ . This together with many
processes with smaller cross sections measured from VEP-2000 and BABAR explains the improve-
ments for the KK̄π , KK̄ππ and the missing channel in Table 1.

The continuum contribution in the non-resonant energy ranges above 1.8 GeV is calculated
using four-loop perturbative QCD including O(α2

s ) quark mass corrections. In the energy range of
1.8−3.7 GeV, an uncertainty of 0.59 is added. This corresponds to the full difference between the
perturbative calculation and the sum of exclusive measurements in the narrow energy interval 1.8−
2.0 GeV. It accounts for possible low-mass quark-hadron duality violation affecting the perturbative
QCD approximation.

The sum of all lowest-order hadronic contributions, ahad,LO
µ = 691±3.4, is improved by 21%

in precision and is still dominated by experimental systematic uncertainties. Including the con-
tributions from higher order hadronic loops, −9.87± 0.09 (NLO) and 1.24± 0.01 (NNLO) [13],
hadronic light-by-light scattering, 10.5± 2.6 [14], as well as QED, 11658471.895± 0.008 [15],
and electroweak effects, 15.36± 0.10 [16], the complete SM prediction amounts to, aSM

µ =

11659182.3±3.4±2.6±0.2(4.3tot), where the uncertainties account for lowest and higher order
hadronic, and other contributions, respectively. The result deviates from the experimental value,
aexp

µ = 11659209.1±5.4±3.3 [17], by 26.8±7.6(3.5σ). A compilation of recent SM predictions
for aµ compared with the experimental result is given in Fig. 1.

Similar reevaluation is also performed for ∆αhad(m2
Z) with the result of (275.3±0.9) ·10−4 [1].

The uncertainty is dominated by data systematic effects (0.7 ·10−4) and the uncertainty in the QCD
prediction (0.6 ·10−4).

To conclude, using newest available e+e− → hadrons cross-section data, the uncertainty of
0.5% on ahad,LO

µ is now reduced to about half the current uncertainty of the aµ measurement, and
has improved by more than a factor of two during the last thirteen years. The discrepancy between
measurement and complete Standard Model prediction remains at a non-conclusive 3.5 σ level.
The forthcoming experiments at Fermilab [20] and J-PARC [21], aiming at up to four times better
ultimate precision, have the potential to clarify the situation.
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Figure 1: Compilation of recent results for aSM
µ (in units of 10−11), subtracted by the central value of the

experimental average. The shaded vertical band indicates the experimental uncertainty. The representative
SM predictions are taken from JN 2009 [18], HLMNT 2011 [19], DHMZ 2011 [3], and DHMZ 2017 [1].
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