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The emergence of the Chiral Magnetic Effect (CME) and the related anomalous current is inves-
tigated using the real time Dirac-Heisenberg-Wigner formalism. This method is widely used for
describing strong field physics and QED vacuum tunneling phenomena as well as pair-production
in heavy-ion collisions. We extend earlier investigations of the CME in constant flux tube config-
uration by considering time dependent fields. In our model we can follow the formation of axial
charge separation, formation of axial current and then the emergence of the anomalous electric
current. Qualitative results are shown for special field configurations that help interpret the pre-
dictions of CME related effects in heavy-ion collisions in the RHIC Beam Energy Scan program.
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1. Introduction

The Quark-Gluon Plasma (QGP) phase is described by Quantum Chromodynamics (QCD)
that is a non-Abelian gauge theory. One of the non trivial properties of QCD is that gauge con-
figurations have topological invariants (winding numbers): integer numbers, that are preserved by
smooth deformations. In heavy-ion collisions configurations with non-zero winding numbers are
expected and these can be interpreted as transitions that may take place as tunneling processes at
low temperature (instantons) or as above threshold ’jumps’ at high temperature (sphalerons).

The simplest non trivial configuration with a non-zero winding number is the flux tube. When
quarks interact with this field they can change their chirality (handedness). Non-central heavy-ion
collisions also create very strong magnetic fields, that restrict quarks to the lowest Landau levels,
such that they momentum get parallelized/antiparallelized (based on their helicity) with their spin,
that is in turn aligned with the magnetic field, and results in a charge separation, that creates a
current. So, if due to topological transitions there is an imbalance between chiralities, the separated
quarks owing to their charge create an electric current parallel to the magnetic field [1].

The process can be formally modeled in the framework of Quantum Electrodynamics (QED)
after color diagonalizing the gluon fields, and having the chromoelectric and magnetic fields con-
sidered as parallel components of the QED E and B fields while also including a perpendicular B
field component for the external magnetic field[2]. We aim to describe the dynamical evolution, so
we use the equal-time Wigner-function formalism to calculate the time evolution of the currents in
the QED system [3, 4].

2. The Dirac-Heisenberg-Wigner formalism

The Wigner-function is a quantum generalization of the classical one-particle phase space
density. The Dirac-Heisenberg-Wigner (DHW) formalism gives a relativistic evolution equation,
that is only depending on a single time parameter, can be formulated by an initial value problem
(starting from vacuum) and suitable to describe the spatio-temporal evolution of a fermionic field
under classical external fields.

To model the Chiral Magnetic Effect, the simplest topologically non-trivial configuration is the
homogeneous flux-tube, and in that case for static fields it was shown how to decompose the QCD
model into a QED analogue problem [5]. For time dependent description the QED Wigner function
can be used, and can be expanded on the Dirac spinor basis that results in a partial differential
equation system of 16 real components. Since we are first interested in describing light quarks, we
take the massless limit, and reduce the number of equations to 8. Following the notation of [4] the
equations read:

Dtv0 +~D~x ·~v = 0 , (2.1)

Dta0 +~D~x ·~a = 0 , (2.2)

Dt~v+~D~xv0 +2~p×~a= 0 , (2.3)

Dt~a+~D~xa0 +2~p×~v = 0 . (2.4)
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Figure 1: Time dependence of the external field, the axial charge and current and the vector current.

where the evolution operators are given without any approximations by Dt = ∂t + e~E ·~∇~p and
~D~x = e~B×~∇~p. The components are representing the current density ~v, the charge density v0, the
axial current density~a and the axial charge density a0.

The initial conditions for vacuum are only non-vanishing for the current density:

~v(~p, t =−∞) = − 2~p√
m2 +~p2

, (2.5)

To further simplify the equations we use the Method of Characteristics [4]. We integrate
the electric field to obtain the vector potential, and use that to shift the momentum variable ~̃p =

~p+e
∫
~E(t)dt to get rid of the e~E ·~∇~p term in Dt . This way only those momentum derivates remain

that are multiplied by the magnetic field in ~D~x.
For the numerical solution a global pseudo-spectral collocation solver was developed that

utilizes the Graphical Processing Units (GPUs) for the dense tensor operations, enabling a 30x
speedup compared to traditional CPU methods. The momentum space functions are expanded on
Rational Chebyshev polynomials[6, 7], and evolved with 4th order explicit Runge-Kutta stepper.

The momentum space integrals vµ(t) = 1
(2π)3

∞∫
−∞

dp3
v

µ(t,~p) and aµ(t) = 1
(2π)3

∞∫
−∞

dp3
a

µ(t,~p) are

calculated by Clenshaw-Curtis quadrature [8]. These quantities are the total electric charge and
current as well as the total axial charge and current respectively. Electric charge is conserved, so
v0(t) = 0, but the axial charge develops a non-zero value, since it is related to the chiral imbalance:
a0(t =+∞) = NR−NL.

The numerical solver was verified on the two important analythic solutions: the time dependent
Sauter electric field case [9] and the stationary magnetic field solution given in [3].

2.1 Sauter field configuration

To verify that this framework can give results consistent with the CME, we first considered a
simple time dependent field, the Sauter field f (t) =Acosh−2 (t/τ) where the amplitude is measured
in critical field units (Ecr or Bcr) and τ is measured in Compton time λc =

h̄
mc2 units. We then set

the field components to Ez = Bz = By = f (t) and all other components to zero. We recorded the

2



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
1
7
2

Chiral Magnetic Effect in the Dirac-Heisenberg-Wigner formalism Péter Lévai

 0

 0.2

 0.4

 0.6

 0.8

 1

Fi
el

ds
CM

E 
Cu

rr
en

t
√s=40 AGeV

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

-2  0  2  4  6  8  10 12 14

Fi
el

ds
CM

E 
Cu

rr
en

t

Time [GeV-1]

Fi
el

ds
CM

E 
Cu

rr
en

t
√s=60 AGeV

-2  0  2  4  6  8  10 12 14

Fi
el

ds
CM

E 
Cu

rr
en

t

Time [GeV-1]

Fi
el

ds
CM

E 
Cu

rr
en

t
√s=130 AGeV

-2  0  2  4  6  8  10 12 14

Fi
el

ds
CM

E 
Cu

rr
en

t

Time [GeV-1]

Fi
el

ds
CM

E 
Cu

rr
en

t
√s=200 AGeV

-2  0  2  4  6  8  10 12 14

Fi
el

ds
CM

E 
Cu

rr
en

t

Time [GeV-1]

Figure 2: Time dependence of the external fields (measured in critical field units) and the anomalous CME
current at collision energies

√
s = 40,60,130 and 200 AGeV.

momentum space integrals during the time evolution and Figure 1. shows the results. Clearly, the
chain of events is what is outlined in the introduction: first, the external fields build up. This drives
the formation of an axial current, that creates an axial charge separation, that results in the charge
displacement that creates the vector current. As the external driving fields decay, the induced charge
and currents converge to their asypmtotic values. Note, that even very small external field values
are able to sustain the dynamics of the other components. A more detailed investigation was given
in [10].

2.2 Heavy-Ion Phenomenology

To model the currents in heavy-ion collision we built a phenomenological model for the exter-
nal E and B fields. We start with the following time dependent function

Φ(t,τ,A,κ) = A ·

{
cosh−2(10t/τ) t < 0,

(1+ t/τ)−κ t ≥ 0,
(2.6)

where we set κ = 2 and define the external fields as follows ([11] eq. 26. for Ez,Bz and [12]
eq. 12. for By):

e~E = {0,0, Φ(t,τ,AEz,κ)} , (2.7)

e~B = {0,ABy

(
1+

t2

τ2

)−3/2

,Φ(t,τ,ABz,κ)} . (2.8)

and the other quantities are related to the center of mass energy
√

s as follows [13]: τ =

0.75
Qs

√
sRHIC√

s , AEz =ABz =Q2
s

( √
s√

sRHIC

)λ

, ABy = 0.2Q2
s

√
s√

sRHIC
with Qs = 1GeV and

√
sRHIC = 200AGeV.

3



P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
1
7
2

Chiral Magnetic Effect in the Dirac-Heisenberg-Wigner formalism Péter Lévai

The z amplitude scale λ , is the gluon saturation scale, that is chosen to be 0.2 in accordance with
the literature [14, 15].

Figure 2. shows the shape of the external fields, and the y component of the vector current for
different collision energies. Smaller energies result in larger τ , which is known in the strong field
picture to increase the magnitude of currents and make the temporal dynamics last longer. This is
clearly observed in the time dependence anomalous electric current, Vy, which slowly approaches
its asymptotic value, since the driving fields have only a cut-power law decay (c.f. eq. 2.6).

The unexpected phenomena at almost all energies is that the anomalous current starts with a
negative sign and undergoes a reversal at t ≈ 2 GeV−1 after the collision. Between 40-60 AGeV the
negative dip disappears that we attribute to the larger width of the pulse. Precise values depend on
the external field models, it’s amplitude, gradients, decay rate, but for pulse like fields the overall
behavior is the same.

3. Discussion

Our calculation based on the real-time Dirac-Heisenberg-Wigner formalism has shown that
the RHIC Beam Energy Scan program should be capable to observe the CME effect with changing
the bombarding energy. Unfortunately our results indicate the disappearance of the effect at the
highest RHIC energies, as well as at LHC energies.
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