Neutrino Physics at ADS Facilities
Pre-published on:
October 19, 2017
Published on:
March 20, 2018
Abstract
Accelerator Driven System (ADS) subcritical reactors are being developed around the world. The main goals of this kind of facility are to produce energy and, at the same time, to dispose of nuclear waste, which will be used to power nuclear reactors. Since, by itself, used nuclear fuel is not able to sustain a chain reaction, the additional neutrons needed will be supplied by a high-intensity accelerator, where a proton beam will be hitting a spallation target. This accelerator will produce, as a by-product, a large quantity of neutrinos: I will discuss the opportunities offered for the study of neutrino physics. In China the C-ADS program is centered on the design and construction of such a facility: a prototype of the accelerator is already operative, during the course of the project the accelerator energy will be gradually increased up to 1.5 GeV. In the first phases of the project, when the beam energy is low, $\bar{\nu}_e$ can be produced via Isotope Decay At Rest (IsoDAR): they can be detected with liquid scintillators and used to provide competitive bounds on sterile neutrinos in the disappearance channel. In the next phases, when the beam energy is higher, $\bar{\nu}_\mu$ will be produced via muon Decay At Rest ($\mu$DAR): in this phase it will be possible to measure the CP-violating phase $\delta_{CP}$ and to look for experimental signs of the presence of sterile neutrinos in the appearance channel, testing the LSND and MiniBooNE anomalies.
DOI: https://doi.org/10.22323/1.314.0099
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.