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Cosmology of Self-Gravitating Media
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The low-energy dynamics of a generic self-gravitating medium can be studied by using effective
field theory (EFT) in terms of four derivatively coupled scalar fields. Imposing SO(3) internal
spatial invariance, the theory describes fluids, superfluids, solids and supersolids. Dynamical and
thermodynamical properties of the medium are dictated by internal symmetries of the effective
theory. From the analysis of cosmological perturbations it emerges that in the scalar sector, be-
sides the gravitational potential, there is a non-adiabatic mode corresponding to the perturbations
of the entropy per particle σ . Perfect fluids and solids are adiabatic with σ constant in time, while
for superfluids and supersolids σ has non-trivial dynamics. Tensor perturbations are massive for
solids and supersolids. Such an effective approach can be used to give a very general modelling
of the dark sector based on symmetries.

The European Physical Society Conference on High Energy Physics
5-12 July, 2017
Venice

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:luigi.pilo@aquila.infn.it


P
o
S
(
E
P
S
-
H
E
P
2
0
1
7
)
0
4
9

Self-Gravitating Media Luigi Pilo

Observations indicate that the Universe is accelerating [1] and the question is what is driving
such a phase if we are in the presence of a cosmological constant. Identifying the content of the
dark sector is particularly challenging, thus it is very useful to classify the various alternatives by
using symmetries. Without dwell upon the dilemma dark energy (DE) vs modified gravity, we
will focus on symmetries and on the fields in the gravitational sector that realize them. When we
impose diffeomorphism invariance and the metric is the only field, it is well known that we end up
with general relativity with two propagating degrees of freedom (DoF). If more than two DoF are
present in the dark sector, we need more fields. The basics idea is that those fields represent the
low energy dynamics of some sort of effective medium whose fluctuations are phonon-like. Thus,
in our approach the dark sector is modelled as a generic self-gravitating medium with the only
requirement to admit an isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) background as
solution. At low energy the four derivatively coupled scalar fields ϕA, A = 0,1,2,3 can be inter-
preted as the comoving coordinates of the medium and their fluctuations represent the Goldstone
modes for the broken spacetime translations but also as Stückelberg fields to restore broken diffeo-
morphisms [2, 3, 4, 5, 6, 7]. Such an effective field theory description has been already considered
in [8, 9, 10, 11, 12] for particular types of media. The advantage of such approach is a rather simple
framework but at the same time general enough to capture the main observables that will be probed
in future surveys. This has to be compared with the vast number of proposals for DE/modified
gravity models. Dynamical and thermodynamical properties of the medium are also determined by
internal symmetries which translate in physical observables properties. Media can be conveniently
classified, according to the internal symmetries of the scalar field theory [8, 13, 14, 5] in perfect
fluids, superfluids, solids and supersolids; moreover their thermodynamical properties as a medium
are studied by creating a dictionary among the operators of the effective field theory and the basic
thermodynamical variables [15, 12], see also [9, 10]. While the dynamical equations for cosmo-
logical perturbations are rather cumbersome when expressed in terms of the fluctuations of the
scalar fields, they have a clear physical interpretation once the entropy per particle σ is introduced.
Generically, in the scalar sector, two dynamical modes exist: the fluctuation of the gravitational
potential and the perturbation δσ of the entropy per particle. There are media, like perfect fluids,
where the dynamics of δσ is very simple: δσ is conserved in time. For superfluids and supersolids
δσ has a more complicated evolution.
Following the notations of [5, 12], in a derivative expansion, the leading operators of the EFT can
be written in terms of

CAB = gµν
∂µϕ

A
∂νϕ

B , A,B = 0,1,2,3 . (1)

and the the velocity fields u and V are defined as

uµ =
εµαβγ ∂αϕ1 ∂β ϕ2 ∂γϕ3

b
√

g
, Vµ =−(−X)−1/2

∂µϕ
0 . (2)

where gµν is the spacetime metric and b =
√

det(Bab), with Cab = Bab, with the small latin indices
assuming the values 1,2,3. The 3x3 matrix with matrix elements {Bab, a,b = 1,2,3} denoted by BBB
is a submatrix of the 4x4 matrix with matrix elements {CAB, A,B = 0,1,2,3}. Being uµ∂µϕa = 0,
ϕa can be interpreted as the spatial Lagrangian (comoving) coordinates of the medium, while
ϕ0 represents the clock’s medium. When the scalar fields fluctuate around ϕA = 0, translation
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invariance is unbroken and basically the medium is not present; in the broken phase the fields
acquire a vacuum expectation value that is not invariant under spacetime translations. The leading
order action in a derivative expansion of a self-gravitating medium in the presence of dynamical
gravity, is given by

S = M2
Pl

∫
d4x
√
−gR+

∫
d4x
√
−g U(b, Y, X , τn, ym) ; (3)

where R is the Ricci scalar, MPl is the Planck mass and U is the medium Lagrangian depending on
a complete set of operators invariant under shift symmetry and internal rotations, ϕa→Ra

bϕb with
RtR = 1. A possible choice comprises ten operators given by

Y = uµ
∂µϕ

0; τn = Tr(BBBn) , n = 1,2,3; yn = Tr(BBBn ZZZ) , n = 0,1,2,3 ZZZab =C0aC0b. (4)

Interestingly, the EFT formalism allows also to give a thermodynamical interpretation of some of
the scalar fields operators [15]; in particular Y can be interpreted as the temperature of the medium
while the entropy per particle σ is given by

σ = b−1 (UY − 2 Y UX) . (5)

Let us consider scalar linear cosmological perturbations in the Newtonian gauge, the perturbed
metric is

ds2 = a2
ηµν dxµdxν +2a2 [

Ψdt2 +Φd~x2] , (6)

while for the scalars fields we set

ϕ
0 = φ(t)+π0(t,~x), ϕ

a = xa +∂aπL(t,~x) . (7)

As discussed in [12], the dynamics of linear perturbations is controlled by five parameters M0,
M1, M2, M3 and M4, which are expressed in terms of first and second partial derivatives of the
Lagrangian U with respect to basic operators of the EF, and defined as

M0 =
φ ′2
[
a2 (UYY −2UX)−4aUY X φ ′+4UXX φ ′2

]
2M2

Pl
, M1 = 2M−2

Pl φ
′2 a2(UX +

3

∑
n=0

a−2nUyn) ;

M2 =−2M−2
Pl a−2 (a4Uτ1 +4a2Uτ2 +9Uτ3

)
.

The explicit expressions of M3 and M4 are not very illuminating and will be not given here. In the
unitary gauge, in which the scalar fields themselves ϕA are used as coordinates of the spacetime,
all the perturbations are shifted to the metric and the dynamics of self-gravitating media is equiva-
lent [8, 5] to rotational invariant massive gravity[16, 6, 17]. The parameters Mα are related to the
possible mass terms of the metric fluctuations h00, h0i and hi j.
Generically, in the scalar sector there are two propagating modes, namely Φ and the δσ . The two
dynamical equations in Fourier space are

Φ
′′ +

[
3(1+ c2

s )H +F1
]

Φ
′+

M2 H φ ′

6M2
Pl a4 k2 (w+1)H 2 δσ

′+

[
φ ′
(
c2

b− c2
s
)

4M2
Pl a2 +F2

]
δσ +[

3H 2 (c2
s −w

)
+ k2 c2

s +F3
]

Φ = 0; (8)
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[
φ ′2
[
a2 H 2 (w+1)+M1

]
a2 M1 M2

Pl H
2 (w+1)

δσ
′

]′
+

[
4k4 M2 φ ′

9H 3 (w+1) [a2 k2 (w+1)+2M2]

]
Φ
′− (9)[

2k4 φ ′
(
c2

b− c2
s
)

3H 2 (w+1)
+F4

]
Φ−

[
φ ′2 k2

[
3a2 H 2 (w+1)+M2

0 (c
2
s −2c2

b)
]

6a2 M0 M2
Pl H

2 (w+1)
+F5

]
δσ = 0;

where the Fi are functions of k2, Mi and such that

lim
M2→0

Fi = 0 , i = 1,2,3,4,5 . (10)

The explicit form of Fi is given in [12]. We have denoted by f ′ the derivative of f with respect
to conformal time and H = a′/a, kkk is the conformal momentum with kkk2 = k2. In the dynamical
equations, two speeds of sound appear: the adiabatic one, c2

s , defined in FLRW in terms of the
background energy density and the background pressure; and the second one c2

b:

c2
s =

p̄′

ρ ′
=

2 M2
Pl

[
3M2

4 +M0 (M2−3M3)
]

3a4 M0 (p̄+ ρ̄)
, c2

b =−
M4

M0
. (11)

The EFT formalism provides in clear and self-consistent way the non-adiabatic pressure variation
and it is controlled by the difference between c2

s and c2
b, namely

δ p = c2
s δρ +

φ ′(c2
b− c2

s )

a4 δσ . (12)

No guess work is needed on the coefficient in front of δσ . Notice that c2
b also controls the evolution

of background values φ of ϕ0 according to

φ
′′ =

(
1−3 c2

b
)

H φ
′ . (13)

The above relation, in the Stückelberg language, is equivalent to energy conservation: ρ̄ ′+3 H (ρ̄+

p̄) = 0.
Solids are characterized by M2 6= 0 which gives a non-vanishing anisotropic stress

Ψ−Φ =
M2

[a2ρ (a2k2(w+1)+2M2)]

[
δσφ ′

a2 +
[
a2

ρ(−(3w+5))−4k2M2
Pl
]

Φ−12M2
PlH Φ

′
]
.

(14)
Adiabatic media like perfect fluids and solids, are such that the equation for σ is very simple: σ ′ =

0, and are characterized by M1 = 0. Perfect fluids have M1 = M2 = 0 and the evolution equation for
Φ is standard, besides the presence of an inhomogeneous term proportional to a constant in time
δσ ; we have

Φ
′′+3(1+ c2

s )H Φ
′+
[
3H 2 (c2

s −w
)
+ k2 c2

s
]

Φ+
φ ′
(
c2

b− c2
s
)

4M2
Pl a2 δσ = 0 . (15)

Superfluids have M2 = 0 but M1 6= 0, thus δσ is not constant. For supersolids, both M1 and M2

are different from zero. It is interesting to point out that the presence of two propagating scalars,
in the light of the correspondence with massive gravity, seems to be suspicious due to the possible
presence of the Boulware-Deser ghost. However, as soon as p+ ρ is not zero and then the null
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energy condition is not violated, one can check that no instability is present neither around FLRW
nor around Minkowski spacetime. As byproduct, the self-gravitating media approach provides the
interpretation of the would-be ghost as entropy per particle fluctuation of the medium. The limiting
case p+ρ ≤ 0 will be discussed elsewhere.
In conclusion, the effective description in terms of self-gravitating medium gives a general descrip-
tion of new DoF that might be present in the dark sector of cosmology.
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