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1. Introduction

We propose a novel approach to the problem of the turnaround radius of a large structure

in an accelerating universe. This new approach is based on the Hawking quasilocal energy of

General Relativity (GR) and is part of a broader program aiming at applying this formal concept to

cosmology. Thus far, the quasilocal energy has been applied to Newtonian N-body simulations of

large scale structure formation [1], and to the decade-old problem of lensing by the cosmological

constant [2].

2. Turnaround radius with Hawking mass in GR

Consider the present accelerated era of the universe and the largest bound objects in the sky.

It was suggested recently that the turnaround radius is a possible probe of dark energy or modified

gravity scenarios [3, 4, 5, 6] but the concept of turnaround radius is older [7].

In an accelerated FLRW universe with one spherical inhomogeneity, massive test particles

with zero radial initial velocity cannot collapse if they lie outside a critical radius Rc (turnaround

radius),1 but they only expand. Dust shells with R < Rc collapse but, if you are in geodesic motion

outside Rc, you will never fall back.

Over the years, the turnaround radius has been studied in exact solutions of the Einstein equa-

tions, including the Schwarzschild-de Sitter, Lemaître-Tolman-Bondi (LTB), and McVittie space-

times. In the heuristic Schwarzschild-de Sitter space with line element

ds2 =−
(

1− 2M

R
−H2R2

)

dt2 +
dR2

1− 2M
R
−H2R2

+R2dΩ2
(2) (2.1)

where H =
√

Λ/3, the turnaround radius

Rc =

(
3GM

Λ

)1/3

(2.2)

is obtained by setting to zero the acceleration along radial timelike geodesics. In LTB models with

dust and a cosmological constant Λ

ds2 =−dt2 +
R′(t,r)

1+ f (r)
dr2 +R2(t,r)dΩ2

(2) (2.3)

(where ′ ≡ d/dr and f (r) is related to the initial density profile), radial timelike geodesics obey

R̈ =−GM (r)

R2
+

ΛR

3
(2.4)

and the authors of [5] obtain the turnaround radius

Rc =

(
3GM (rc)

Λ

)1/3

, (2.5)

1R denotes the areal radius, a geometric quantity which is covariant and gauge-invariant.
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where

M (r)≡
∫ R

0
dRR2ρ (2.6)

is the Lemaître mass.

While exact solutions of the Einstein equations are toy models, a realistic description of the

universe uses the perturbed Friedmann-Lemaître-Robertson-Walker (FLRW) line element

ds2 = a2(η)
[

−(1+2φ)dη2 +(1−2φ)
(

dr2 + r2dΩ2
(2)

)]

. (2.7)

The timelike radial geodesics obey [5]

R̈ =
ä

a
− GM (r)

R2
, (2.8)

and it is suggested implicitly in [5] that M (r) is the Lemaître mass (2.6), from which one obtains

the turnaround radius [5]

Rc =

(
3M

4(3w+1)πρDE

)1/3

. (2.9)

Two questions arise: the issue of the gauge-invariance of this result and, more important, it is

not clear what the “mass contained in a sphere of radius R” is. Should it include the dark energy

density ρDE? If not, why? Should it include only ρperturbation? If so, why? The Hawking-Hayward

quasilocal energy MHH of GR, which includes all energy forms, is suitable for answering both

questions. In spherical symmetry it reduces to the Misner-Sharp-Hernandez mass [8]. We assume

that GR is valid, we restrict to first order in the metric perturbation which (as customary in the

literature on the turnaround radius) is assumed to be spherically symmetric (φ = φ(r)), and we

assume that the background universe is a spatially flat FLRW one accelerated by dark energy with

density ρDE and pressure PDE = wρDE .

The physical Hawking-Hayward quasilocal energy [9], based on the idea that the total mass

in a region bounded by a 2-surface S is measured by its effect on null geodesics at S, is defined as

follows [9]. Let S be a closed spacelike orientable 2-surface, R the induced Ricci scalar on S, θ(±)

the expansions of outgoing/ingoing null geodesic congruences from S, σ
(±)
ab their shear tensors, ωa

the anholonomicity (i.e., the projection on S of the commutator of the null normal vectors to S), µ

the volume 2-form on S, and A the area of S. Then,

MHH ≡ 1

8π

√

A

16π

∫

S
µ

(

R+θ(+)θ(−)−
1

2
σ
(+)
ab σab

(−)−2ωa ωa

)

. (2.10)

By computing this quantity for the line element (2.7) we find that, to first order, it decomposes as

[10]

M̃HH = ΩMHH − RΩ,η

4π

Ω,η

Ω

∫

S
µ φN

︸ ︷︷ ︸

local

+
R3

2

Ω2
,η

Ω
︸ ︷︷ ︸

cosmological

. (2.11)

In spherical symmetry this decomposition reduces to [1, 11, 2]

MHH = ma+
H2R3

2
(1−φ)≃ ma+

H2R3

2
, (2.12)
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where

m ≡ 1

4π

∫

d3~x∇2φ (2.13)

is the Newtonian mass of the perturbation. Our new criterion identifies the turnaround radius by

equating the two contributions to the quasilocal mass, which yields

Rc(t) =

(
2ma

H2

)1/3

. (2.14)

The Friedmann equation H2 = 8πGρDE/3 then gives Rc(t) =
(

3ma
4πρDE

)1/3

. If, in addition, the

equation of state parameter w of the dark energy is constant, one obtains Rc =
(

3ma
4πρ0

)1/3

a(3w+4)/3.

For comparison, the ratio of the turnaround radius (2.14) to that of [5] is

Rc

R
(PT T )
c

=

( |3w+1|
2

)1/3

≈ 1 if w ≈−1 . (2.15)

Although the difference is numerically small, in our approach there is no ambiguity in the concept

of “mass inside a sphere of radius Rc” and the description is gauge-invariant. We have, therefore, a

rigorous derivation of turnaround radius.

The turnaround radius may provide a way to constrain the equation of state parameter w of

dark energy. One can express it as a function of redshift Rc(z) and obtain [5]

∫

dz
w(z)+1

z+1
= ln

[(
3ma

4πρ

)1/3
1

R(z)

]

. (2.16)

If w = const., this expression reduces to

w =−1+

ln

[(
3ma
4πρ0

)1/3
1

Rc(z)

]

ln(z+1)
(2.17)

which, in principle, allows one to constrain w if ma and Rc are known.

3. Turnaround radius in scalar-tensor gravity

Consider now scalar-tensor gravity. Because there is no universally accepted notion of quasilo-

cal energy in this class of theories (see, however, the proposals [12]), we proceed with the usual

(gauge-dependent) method of setting to zero the acceleration along radial timelike geodesics. The

perturbed FLRW spacetime is now described by the line element

ds2 = a2(η)
[

−(1+2ψ)dη2 +(1−2φ)
(

dr2 + r2dΩ2
(2)

)]

(3.1)

with two perturbation potentials φ = φ(r),ψ = ψ(r). The radial timelike geodesics are described

by

du0

dτ
+

aη

a
(u0)2 +2ψ ′u0u1 +

aη

a
(1−2φ −2ψ)(u1)2 = 0 (3.2)

(3.3)

du1

dτ
+ψ ′(u0)2 +

2aη

a
u0u1 −φ ′(u1)2 = 0 , (3.4)

3
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where ucuc =−1. The areal radius is R(t,r) = ar
√

1−2φ ≃ ar (1−φ). Manipulations yield [13]

d2R

dt2
=

[

är+
ȧu1

au0
+

1

au0

d

dτ

(
u1

u0

)]

(1−φ) . (3.5)

The criterion d2R/dt2 = 0 locating the (unique) turnaround radius yields

är− ψ ′

a
= 0 (3.6)

or, in terms of the areal turnaround radius, Rc = a(t)rc [1−φ(rc)] or again, using the gravitational

slip ξ ≡ (φ −ψ)/φ ,

äRc (1+φc)−φ ′
c (1−ξc)+φcξ ′

c = 0 . (3.7)

4. Conclusions

The turnaround radius constitutes a potential probe of gravity and/or of the ΛCDM model.

For spherical perturbations of a FLRW universe in GR, the (covariant) Hawking-Hayward/Misner-

Sharp-Hernandez mass MHH splits, to first order, into a local part and a cosmological part. This

covariant splitting allows a rigorous derivation of the turnaround radius Rc and provides a small

numerical correction to the value of Rc in the literature, but a much needed clarification of “mass

contained in a sphere of radius R”.

In modified (scalar-tensor or f (R)) gravity, there is no universally accepted notion of quasilo-

cal mass MHH . In this case, the usual criterion R̈ = 0 along radial timelike geodesics yields an

expression of Rc in this class of theories.

Is the turnaround radius important? A recent claim by astronomers [6] that the upper bound

set by GR on Rc is exceeded by far in the galaxy group NGC 5353/4 has been taken back due to the

previously underestimated error introduced by the non-sphericity of the system [14]. However, the

verdict on the usefulness of the turnaround radius as a cosmological probe is still out and requires

further and careful study.
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