

Intro

- ✓ How galaxies shine in gamma rays?
 - Interactions of cosmic rays (CR) with interstellar medium (π^0 decay, inverse-Compton, bremsstrahlung)
 - astrophysical sources (supernova remnants, pulsars and pulsar wind nebulae, binaries...)
 - dark matter
- ✓ LAT detected 7 extragalactic star-forming or starburst galaxies and performed systematic studies of more than 60 galaxies.
- ✓ M31: only other large spiral local galaxy, close =>best target for resolved analysis

Analysis and Results

Spatial analysis (>1 GeV)

best-fit uniform disk

M31 gas column density $(N_{\rm H})$ map

- Gamma-ray emission is confined to inner regions (R~5 kpc)
- Not correlated with interstellar gas and star-formation sites
- Disk (plane) of the galaxy is not detected

Spectral analysis (>100 MeV)

- ✓ Adding cutoff: no significant improvement
- Consistent with the total interstellar emission or pion decay of the MW
- Less consistent with IC component of the MW
- ✓ Model difference: not significant

Discussion

I. Interstellar emission

- π^0 decay
 - Low gas content to be compensated by high CR density at the galaxy center (similar to some regions in LMC)
 - ➤ But far from typical gas and star-formation regions (not detected in gamma rays)
- inverse-Compton (IC)
 - IC dominates the emission of M31: π^0 decay < 50% IC
 - Opposite to what is inferred for the MW: $IC = 45\% \pi^0 \text{ decay}$

III. Dark matter (DM) annihilation/decay

- Smooth halo: Navarro-Frenk-White (NFW) profile
- Take GCE as reference
- J-factors
 - MW: 2x10²² GeV²/cm⁵
 - M31 · $8 \times 10^{18} \, \text{GeV}^2 / \text{cm}^5$
- Expected DM signal from M31: ~5x below observed value
 - But uncertainties on J-factor of M31...
 - And uncertainties on the GCE flux ...

II. Population of millisecond pulsars (MSPs)

- Related to old star populations in the disk and bulge of galaxies
- Suggested to be the origin of the Galactic Center Excess (GCE) (e.g. Brandt & Kocsis 15)
- Case of M31
 - Center: many old stars and X-ray binaries (Barmby+06, Voss & Gilfanov 07, Stiele+10)
 - Possible large population of MSPs at the center
 - Spatial distribution consistent with old stars (IRAC map)
 - SFR M31 \sim 0.1xSFR MW decrease the disk emission
 - Bulge mass_M31 \sim (5-6)xMW increase the center emission
 - Gamma-ray luminosity of M31 \sim (4-5)xGCE

https://www.nasa.gov/feature/goddard/2017/nasas-fermi-finds-possible-dark-matter-ties-in-andromeda-galaxy/