

Study of γ rays from Molecular Cloud Regions

γ rays ~ CRs x ISM (or ISRF)

(Ackermann+12)

Diffuse GeV γ rays are powerful probe to study the ISM

- γ-ray production does not depend on the chemical and thermodynamic state of the ISM
- A good tracer of the total gas column density

"Conventional γ-ray analysis" (e.g., Ackermann+12)

- Fit γ -ray data with linear combination of three gas maps under the assumption that CRs uniformly thread the ISM
- "dark gas" (gas not traced by standard HI and CO observations) map is inferred by dust extinction map

NH Model and γ-ray Analysis

- Fukui+15 suggested N_{H} model based on linear function of the thermal dust optical depth τ_{353}
- Roy+13/Okamoto+17 found <u>nonlinear relation</u> in Orion/Perseus molecular clouds
- We examined several N_H models as function of τ_{353} with linear/nonlinear relations by fitting them to γ -ray data in the Chamaeleon region

Galactic Longitude (deg)

$$+I_{\mathrm{IC}}(l,b,E)+I_{\mathrm{iso}}(E)+\sum_{j}\mathrm{PS}_{j}(l,b,E)$$

In(L)

1.0

Katsuhiro Hayashi

1.2

1.3

a

100

Results (Residual Maps)

- Residuals in standard deviation (σ)
- Significant positive and negative residuals are seen in the models of $\tau_{353} \propto \textit{N}_{H^{1.0}}$ and $\propto \textit{N}_{H^{1.6}}$
- $\tau_{353} \propto N_{H^{1.3}}$ model provides the best fit to γ -ray data; lower residuals and the highest $\ln(L)$
- The nonlinearity may suggest grain evolution in the molecular cloud complex

1.6 • R

1.5

References: Ackermann et al. 2012, ApJ, 755, 22 Okamoto et al. 2017, ApJ, 838, 13 Roy et al. 2013, ApJ, 765, 55

Fukui et al. 2015, ApJ, 798,6 *Planck* Collaboration XXVIII, 2015

4