

We consider:

Secondary particle production from hadronic p- γ interactions of external target photons with isotropically distributed CR protons in the co-moving blazar jet frame

- -> externally isotropic target photon distribution appears anisotropic (beamed) in co-moving jet frame
- To describe the interaction probability in the co-moving jet frame we calculate the gyro-phase averaged interaction rate
- We then modified the SOPHIA2.0⁽¹⁾
 Monte Carlo code to take into account the corresponding non-isotropic interaction angle distribution
- When comparing to Dermer et al $(2014)^{(2)}$ we found ~2-3 times higher interaction rates in our work for mono-energetic (photon energy ε_0) target photon fields

Interaction time in the co-moving jet (with bulk Lorentz factor Γ =10) frame for an externally isotropic target radiation field of differential density $n(\varepsilon)$ =1cm⁻³ $\delta(\varepsilon$ - $\varepsilon_0)$ with (jet-frame) ε_0 =10⁻⁴eV (solid), 10⁻³eV (dotted), 10⁻²eV (short dashed), 0.1eV (dash-dotted), 1eV (dash-tripledotted line),... as calculated in Dermer et al (2014) (blue curves) and compared to our work (black curves).

Results

We here consider:

[see DMI2014⁽²⁾] & isotropically (co-moving jet frame) distributed proton spectrum

$$N_P \sim E^{-\alpha p} \exp(-E_P/E_{P,max}), E_{P,max} = 10^{10} GeV$$

Examples of secondary particle spectra:

(AGN frame; all neutrons decayed;

viewing angle $\theta=5^{\circ}$)

$$\alpha_{P} = 2$$

18.0

bulk Lorentz factor Γ = 10

We found:

$$EM[\gamma+e^++e^-]$$
 -power / ν -power

~ 1

Comparison to previous approximations

A previous approximation of the co-moving (') BLR target photon field uses a isotropically distributed blackbody photon field with peak intensity at

$$v'_{peak} \approx 1.5 \Gamma v_{Ly\alpha}$$

[Tavecchio & Ghisellini 2008; Böttcher, Reimer & Marscher 2009; Reimer 2009]

-> Comparing this approximation to our work we found:

Blackbody approximation underestimates secondary particle yields @ low-energy part of spectrum.

 Γ = 10, θ =5°

References:

⁽¹⁾ A. Mücke, R. Engel, J.P. Rachen, R.J. Protheroe, T. Stanev 2000, CPC, 124, 290

⁽²⁾ C.D. Dermer, K. Muras, Y. Inoue, 2014, JHEA, 3, 29 (DMI14)

⁽⁵⁾ A. Reimer, 2009, "Int.J.Mod.Phys.D, 18, 1511