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In this contribution, We report our recent functional renormalization group (FRG) study on the
phase diagram of two-flavor massless QCD at finite baryon density in a quark-meson model with
σ ,π , and ω mesons. The dynamical fluctuations of quarks, σ , and π are included into the flow
equations, while the amplitudes of ω-fields are also allowed to fluctuate. At high temperature the
effects of the ω-field on the phase boundary are qualitatively similar to the mean-field calcula-
tions; the phase boundary is shifted to the higher chemical potential region. As the temperature is
lowered, however, the transition line bends back to the lower chemical potential region, irrespec-
tive to the strength of the vector coupling. In our FRG calculations, the driving force of the low
temperature first order line is the fluctuations rather the quark density, and the effects of ω-fields
have little impact. At low temperature, the effective potential at small σ field is very sensitive to
the infrared cutoff scale, and this significantly affects our determination of the phase boundaries.
The critical chemical potential at the tricritical point is affected by the ω-field effects but its crit-
ical temperature stays around the similar value.Some caveats are given in interpreting our model
results.
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1. Introduction

The phase diagram of Quantum Chromodynamics (QCD) has been of great interest to theo-
retical and experimental researches [1, 2]. While it became possible to study the high temperature
region quantitatively due to experimental studies and the lattice Monte-Carlo simulations, our un-
derstanding for the phase diagram at high baryon density remains uncertain, partly because the
lattice simulations are not directly applicable due to the infamous fermion-sign problem , and also
because the nuclear interactions at finite density are very complex. But in recent years a lot of hints
to understand the phase structure have become available thanks to the experimental efforts such
as Beam Energy Scan (BES) program at RHIC [3], the constraints from the lattice QCD [4], and
astrophysics at very low temperature [5].

A schematic quark model description at high baryon density, typically based on the Nambu-
Jona-Lasinio or quark-meson models, has been also developed and several results beyond the mean
field treatments are available [6–11]. One of the methods to go beyond the mean field (MF) is the
functional renormalization group (FRG), which efficiently includes various fluctuation effects in
the strongly correlated system. It is known that the fluctuation effects can change the order of the
phase transitions, and thereby can be very important in understanding the QCD phase diagram.

Typically the FRG is applied to quark models of two-flavors with the scalar (σ ) and pseudo
scalar (π) fluctuations [6–8]. There are also studies for the vector (ρ) and axial-vector (a1) fluc-
tuations in the isovector channels [12–14]. On the other hand, to the best of our knowledge, the
ω-fluctuations were taken into account only in the context of the Walecka type nucleon-σ -ω mod-
els whose main target is the nuclear matter at low temperature and density [15–17]. In the quark
model context, the mean field of the ω meson is known to have the significant impact on the phase
boundary and the location of the critical end point [18–20], so it is natural to examine the stability
of the mean-field picture against the ω-fluctuations. In this contribution we will take into account
the (σ ,π,ω)-fluctuations and study their impacts on the phase diagram [21].

2. The Quark-Meson model with ω meson

The Lagrangian of the two-flavors Quark-Meson model with ω meson in Minkowski space is

L = ψ̄
[
iγµ∂ µ −gs(σ + iγ5 τττ ·πππ)−gvγµωµ +µγ0

]
ψ

+1
2 ∂µσ∂ µσ + 1

2 ∂µπππ ·∂ µπππ − 1
4 Fµν Fµν

−U(σ ,πππ,ω), (2.1)

with the field strength tensor Fµν = ∂µων − ∂νωµ . A field ψ is the light two flavor quark field
ψ = (u,d)T . A bold symbol stands for a vector, and τττ = (τ1,τ2,τ3) are the Pauli matrices in
isospin space. The potential for σ , π , and ω is

U(σ ,πππ,ω) =
λ
4
(σ 2 +πππ2 − f 2

π )
2 − m2

v

2
ωµωµ , (2.2)

where fπ is the pion decay constant. We use the value fπ = 93MeV, although its value in the chiral
limit should be slightly smaller, ≃ 87MeV. Typical values of the parameters in our problem are
mv ∼ 1GeV and gv is about ∼ 1− 10, so the range of gv/mv ≃ 10−3-10−2 MeV−1 is the natural
choice in our model.
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2.1 Mean-field approximation

The chiral symmetry of the vacuum is explicitly broken and the expectation values of the
meson fields are ⟨σ⟩= fπ and ⟨πππ⟩= 0. Due to the rotational symmetry, only the zero-component
of the vector field ωµ can have an expectation value [22]. Only considering the time component ω0

of the vector field ωµ , the mean field potential reads as

UMF(σ ,ω0) =
λ
4
(σ 2 − f 2

π )
2 − m2

v

2
ω2

0 . (2.3)

The mean-field effective potential is ΩMF = Ωψ̄ψ +UMF(σ ,ω0) , with the fermion contributions
(µ: quark chemical potential; T : temperature; β = 1/T )

Ωψ̄ψ =−νq

∫ d3 ppp
(2π)3

{
Eqθ(Λ2

MF − ppp2)

}
−

νqT
∫ d3 ppp

(2π)3

{
ln[1+ e−β (Eq−µeff)]+ ln[1+ e−β (Eq+µeff)]

}
, (2.4)

where νq is the degeneracy factor νq =2(spin)× 2(flavor) × 3(color) = 12 and Eq =
√

ppp2 +m2
eff.

The first term is the fermion vacuum fluctuation contribution; if we dropped it off the transition
in the chiral limit would be always the first order [23]. The effective quark (antiquark) mass and
chemical potential are given as meff = gsσ , µeff = µ − gvω0 . For a given T and µ , the gap
equation for ω0 can be derived by solving the quantum equation of motion for ω0,

ω0 =
gv

m2
v

n(T,µ −gvω0), (2.5)

which is the self-consistent equation. Here the quark density n is determined by

n(T,µ −gvω0) =− ∂
∂ µ

Ωψ̄ψ(T,µ −gvω0) . (2.6)

At this level, the vector coupling gv and the mass of the ω0 field are not independent; gvωk is
proportional to (gv/mv)

2. Only their ratio gv/mv appears in both MF and FRG calculations.
In our calculation we follow the choice of Ref. [24] and set the parameters gs = 3.3 and λ = 20,

with which the constituent quark mass in vacuum is Mvac = gs fπ ≃ 307MeV and the sigma mass
is mσ =

√
2λ f 2

π ≃ 588MeV.

2.2 FRG flow equation

The functional renormalization group (FRG) is a powerful non-perturbative tool in quantum
field theories and statistical physics [25] and has been widely applied to QCD effective models
[6–8,26–28]. The effective average action Γk with a scale k obeys the exact functional flow equation

∂kΓk =
1
2 Tr

[
∂kRk

Γ(2)
k +Rk

]
, (2.7)

where Γ(2)
k is the second functional derivative of the effective average action with respect to the

fields. The trace includes a momentum integration as well as traces over all inner indices. An
infrared regulator Rk is introduced to suppress fluctuations at momenta below the scale k.
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In this study the dynamical fields in the flow equation are quarks, σ , and π , and they affect the
effective potential and the size of ω0-fields. Unlike the spatial components of vector fields, the ω0

fields are not dynamical because it does not couple to the time derivative. Therefore the value of
ω0 is completely fixed by specifying the values of other fields. At each scale k in the flow equation,
we determine the value of ω0 fields by solving the consistency equation for given σ and πππ , so the
resultant ω0 may be written as ω0,k(σ ,πππ). This ω0,k field in turn appears in the effective chemical
potential for quarks, affecting the dynamical fluctuations in the flow equations. Throughout our
study we neglect the flow of all wave-function renormalization factors.

The scale-dependent effective potential can be expressed by replacing the potential U with the
scale-dependent one Uk: Γk =

∫
d4x L |U→Uk , with the Euclidean Lagrangian from Eq. (2.1) for

which the temperature is introduced by a Wick rotation to imaginary time
∫

d4x ≡
∫ 1/T

0 dx0
∫

V d3x.
Due to the chiral symmetry, the potential U depends on σ and π only through the chiral invari-
ant ϕ 2 ≡ σ 2 +π2 . Starting with some ultraviolet (UV) potentials UΛ as our initial conditions, we
integrate fluctuations and obtain the scale dependent Uk, which is artificially separated into the
ω-independent and dependent terms, Uk =Uϕ

k +Uω
k , where the function form of Uϕ

k will be deter-
mined without assuming any specific forms, while the potential for the ω-field we keep using the
same form as in Eq. (2.1),

Uω
k =−1

2 m2
vω2

0,k . (2.8)

Later we will also perturb our results by allowing ω4-terms, and check that our results are not
significantly affected.

With these setup, we follow the standard methods to compute the FRG. For the computation
of the flow equation, there are some freedom to choose the regulator Rk. We use the 3d-analogue
of the optimized regulator, which was proposed by Litim [29],

Rk,B(ppp) = (k2 − ppp2)θ(k2 − ppp2), (2.9)

Rk,F(ppp) =−ppp · γγγ

(√
k2

ppp2 −1

)
θ(k2 − ppp2), (2.10)

for bosons and fermions respectively. Inserting Eq. (??-2.10) into Eq. (2.7), the flow equation for
the potential Uϕ

k can be obtained as

∂kU
ϕ
k (T,µ) =

k4

12π2

{
3[1+2nB(Eπ)]

Eπ
+

1+2nB(Eσ )

Eσ

−
2νq
[
1−nF(Eq,µk

eff)−nF(Eq,−µk
eff)
]

Eq

}
, (2.11)

with single-particle energies are

Eπ =
√

k2 +2U ′
k ,Eσ =

√
k2 +2U ′

k +4ϕ 2U ′′
k ,Eq =

√
k2 +g2

s ϕ 2 , (2.12)

for a pion, sigma-meson, and quark, respectively; we also defined U ′
k ≡ ∂Uk/∂ϕ 2. Here the mass

terms are given as usual definition m2
π = δ 2Γ/δπ2, etc., while we found it convenient to use the

expressions (2.12) in our equations. We have assigned the σ quantum number in the radial direction
for the effective potential, while π quantum number for the other directions. Note that during the
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FRG evolution pions may have the finite mass, as U ′
k can be nonzero for general ϕ , vanishing only

at the stationary point.
Apparently, the flow equation should be solved in the ϕ and ω0 directions. But fields ω0 are

not dynamical, so the flow equation of ω0 fields can be computed for a given value of ϕ , like the
Gauss law constraint in gauge theories. At each momentum scale k, we determine ω0,k by solving

∂Uk

∂ω0,k
= 0. (2.13)

The dependence on the ω0,k manifestly appears only through the mass term and the fermion loop;
we have a relation m2

vω0 ∼ gv⟨ψ̄γ0ψ⟩ ∼ ∂Γfermion/∂ µ . The RG evolution of this relation yields the
flow equation

∂k ω0,k =− 2gv k4

π2m2
vEq

∂
∂ µ

(
nF(Eq,µk

eff)+nF(Eq,−µk
eff)
)
. (2.14)

This equation, together with Eq.(2.11), constitute of our flow equations for the effective potential
Uk and the ωk-field as functions of ϕ .

Finally the initial conditions for the flow equations must be set up. The UV scale Λ should
be sufficiently large in order to take into account the relevant fluctuation effects and small enough
to render the description in terms of the model degrees of freedom realistic [15]. We follow the
choice of the Ref. [7], Λ = 500MeV. The initial condition for the potential is

Uϕ
Λ = λ

4 ϕ 4 , (2.15)

and set the parameters gs = 3.2, λ = 8 with the vacuum effective potential from the FRG compu-
tation has the minimum at σvac ≃ 93MeV which is regarded as fπ . We note that the value of λ ,
which enforces ϕ to stay near fπ , is considerably smaller than the MF case (λ ∼ 20). The initial
condition for the ω field has not been examined in detail, and we simply try ω0,Λ(ϕ) = 0. Later
we will also present the result of another different initial condition but it will turn out that such
modification does not change the main story in this paper.

Assembling all these elements, we calculate the effective potential with the fluctuations inte-
grated to kIR = 0. The final step is to find ϕ = σ∗ which minimizes the effective potential. At the
minimum the effective potential is identified as the thermodynamic potential,

Ω(µ,T ) = ΓkIR=0(µ,T,σ∗) . (2.16)

In practice, it is numerically expensive to reduce the IR cutoff, and we typically stop the integration
around kIR ≃ 10MeV.

3. Results

We briefly summarize the MF results for the chiral limit. Following Ref. [23], we include the
fermion vacuum term with ΛMF = 260MeV. Without this term the phase boundary is always the
first order. With the vacuum term, there is a second order phase transition at high temperature and
small chemical potential, and a first order phase transition at low temperature and large chemical
potential. At tricritical points (TCP) with (Tc,µc) the order of the phase transition changes. As
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Figure 1: (Left) The mean-field T − µ phase diagram including vacuum fluctuation (ΛMF = 260MeV)
for the two-flavor massless QCD with different vector couplings. Solid lines show the first order phase
transitions, dashed lines show the second order phase transition. Dots show the tricritical point (TCP), star
shows the vanishing of the TCP; (Right) The phase diagram of the FRG with different vector couplings.

gv/mv increase, the TCP moves to the right bottom side of the phase diagram, and eventually
vanishes at gv/mv = 5.9×10−3 MeV−1. See Fig. 1 (Left).

We present the FRG results for the chiral limit. The phase diagrams for different coupling con-
stants are summarized in 1 (Left). Here we give a quick summary of the results before dictating the
details of calculations: (i) While the critical chemical potential of the TCP is sensitive to the vector
coupling, its critical temperature is similar for different vector couplings; (ii) At high temperature,
the vector couplings shifts the phase boundaries to higher chemical potential as in the MF, but the
curves strongly bend back toward lower temperatures irrespective to the value of gv; the curves
with different vector couplings approach one another. We note that the back bending behavior has
been already found in other FRG calculations without the vector coupling [7–10, 27, 30, 31].
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Figure 2: The scale evolution of the effective potential Γk(ϕ) at low temperature. We compare the results
with and without the vector coupling near the phase boundaries in the FRG results; (top) gv/mv = 0, T =

10MeV and µ = 276.7MeV; (bottom) gv/mv = 0.01MeV−1, T = 10MeV and µ = 287.7MeV.

The full flow equation (2.11) is solved on a grid [6,32]. To check the stability of our numerical
results, we compare two different methods to solve the flow equation. We got the same results for
the 4th order Backward Differentiation Formula (BDF) and the Linearly Implicit Midpoint method.
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The flow equation is integrated from the UV momentum k = Λ = 500MeV to the IR momentum
kIR = 10− 20MeV until the location of the minimum of the effective potential is stabilized (See
Fig. 2). The fluctuations erase the barrier between two local minima in the mean field potential,
making the effective potential convex, as they should.

Fig. 2 illustrates the evolution of the effective potential Γk(ϕ) towards the IR for different
vector couplings. We fix the temperature to T = 10MeV and chose the chemical potential near the
phase boundaries of the FRG results. The top panel is the result for gv = 0 at µ = 276.7MeV, and
the bottom one is for gv/mv = 0.01MeV−1 at µ = 287.7MeV. We can see that the phase transition
is of the first order in this case. As we increase µ , the global minimum smoothly approaches the
local minimum at ϕ = 0, leading to the second order phase transition at µ ≃ 282MeV (see Fig. ??).
This also means that there exists a tri-critical end point. All these features are consistent with the
calculations in Ref. [7].
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Figure 3: The vacuum expectation value of the order parameter ϕ and the baryon density as a function
of chemical potential µ at T = 5MeV, calculated by the FRG with different vector couplings. The gv = 0
case has the first order transition around µ ≃ 270MeV, and then the second order phase transition around
µ ≃ 290MeV. The other cases have only the first order phase transitions.

To examine the phase structure in more detail, we check the behavior of the order parameter ϕ
and the baryon density, especially their relationship.

We first examine the results at T = 5MeV, Fig. 3 for (Left) the order parameter and (Righ)
the baryon density normalized by the nuclear saturation density n0 = 0.16fm−3. The result of
the gv = 0 case has the first order phase transition at µ ≃ 270MeV and the second order phase
transition at µ ≃ 288MeV. The other cases gv/mv = (0.8,1.0,1.2)×10−2 MeV−1 all have the first
order phase transitions. After the transition the vector coupling tempers the growth of the baryon
density, as we originally expected.

It seems that the change in order parameter is not driven by the baryon density. This is in
contrast to typical MF calculations in which the baryon density develops first, and then drives the
reduction of the chiral order parameter. Thus the mechanism of the chiral restoration found in our
calculations for T ≃ 5MeV is very different from the conventional density driven one; in fact the
phase transition occurs before µ reaches the vacuum effective quark mass (gs fπ ≃ 298MeV).

The µ-dependence of the baryon density considerably deviates from ∼ µ3 behavior expect-
ed from the single particle contributions. In fact, our derivation of the baryon density includes
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not only the fermionic but also the bosonic fluctuations which also depend on µ , and somewhat
unexpectedly the latter is more important especially when the vector coupling is large.

Note that ω0 is large in spite of small baryon density; the MF-like relation ω0 ∝ n does not
work at all. This means that the large amplitude of ω0 is induced by fluctuations rather than the
quark density, as in the first order phase transition (see Fig. 4) (Left).
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T=5MeV, μ=200MeV, FRG,

gv·mv-1=0.01 MeV-1, ωΛ=0
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Figure 4: (Left) Solutions gv ·ω as a function of the chiral condensate ϕ at fixed µ = 200 MeV,T = 5 MeV
with different vector couplings. Solid lines are for FRG results, and dashed lines for MF results; (Right) The
scale evolution of the omega field gv ·ω as a function of the chiral condensate ϕ at fixed µ = 200 MeV,T =

5 MeV with fixed vector coupling constant gv/mv = 0.01 MeV−1.

We also plot the scale evolution of the omega field gv ·ω as a function of the chiral condensate
ϕ at fixed µ = 200 MeV,T = 5 MeV with fixed vector coupling constant gv/mv = 0.01 MeV−1 in
Fig. 4) (Right). One can easily find that for small ϕ the omega field grows faster and faster as the
scale decreases, but for large ϕ it stays zero.
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Figure 5: (Left) A comparison of the phase diagrams calculated by the grid method FRG and the Taylor
methods. Dashed lines show the second order phase transition. The vector coupling is omitted for simplicity;
(Right) Functional renormalization group T − µ phase diagram with different vector couplings and initial
conditions for omega meson.

To check the stability of our results, in this section we perturb our setup for calculations and
try to identify the universal features.
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Our FRG results in the previous section are very sensitive to the fluctuations. Here we focus
on the effect of the ϕ -fluctuations by using the Taylor expansion of Uk,

Uk(ϕ) =
λk

4
(ϕ 2 −ak)

2, (3.1)

with the scale dependent parameters ak and λk. We recall that our previous calculations did not
assume any functional form for Uk(ϕ). Thus the difference from the Taylor method clarifies the
importance of higher order vertices for ϕ . We also emphasize that in this method there is, by
construction, only one minimum at given T and µ , whose location is determined by the scale
evolution of ak. As before, the initial condition at kUV = Λ is chosen to be ak=Λ = 0, λk=Λ = 15.2
to reproduce the vacuum pion decay constant of fπ ≃ 93MeV. Within this simple approximation,
we get the Taylor method T − µ phase diagram. Here we omitted the vector coupling. We found
that the phase transition line is the second order everywhere and there is no back bending behavior
(See Fig. 5)(Left).

We check the robustness of our results by varying treatments of the ω-fields. From now on,
gv/mv is fixed to 0.01MeV−1. We change the initial condition for the omega meson from ωk=Λ = 0
to ωΛ = ϕ Starting with this initial condition, the value of ω as k → 0 tends to a take larger value
than the case with the initial condition ωΛ = 0. We found that this change tends to increase the
value of ω at relatively large ϕ , bringing the energy cost due to the repulsive force. As a result
the phase transition to ϕ = 0 occurs at lower temperature and chemical potential. But the overall
structure of the phase diagram does not change, as seen in Fig. 5)(Right) Next we also consider the
effect of quartic coupling 1

12 g4 · (g2
vm2

v) ·ω4
0,k [21].

With this configuration, the flow equations for Uk and ω0,k are both affected. We show the
result for g4 = 5×10−6 MeV−2 in Fig. 5)(Right). With the quartic term, the overall structure such
as the back bending behavior is not significantly affected. The phase transition line shifts slight to
the lower chemical potential region.

4. Summary

In this contribution we discuss the quark meson model with σ , π , and ω mesons at finite
temperature and density using the FRG. We focus on the effects of the ω-mesons, which are known
to be very important in MF determination of the phase boundaries.

Without ω-fields, it has been known that FRG calculations typically lead to the back bending
behavior at low temperature phase boundary. This behavior looks somewhat unnatural to us, and we
expected that introduction of the repulsive density-density interactions would tame this problem.
Our FRG results do not follow our expectation; what we found is that the low temperature first
order phase transition in the FRG is induced by fluctuations, rather than number density as in the
MF case, so that the structure of the low temperature boundaries remains similar for different values
of vector couplings.

Another important finding in this study is that the effective potential at small ϕ is very sensitive
to the infrared cutoff scale k. If we artificially stopped the integration before stabilizing the result,
we would get very different phase boundaries. On the other hand, the results without going very
small k are closer to the conventional MF results which are easier to interpret on physical grounds.
It is not clear to us whether there exist good rationales to ignore fluctuations in the very infrared.
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We think that our FRG results show very strong fluctuation effects with which the results are
hard to interpret. We believe that the problem of strong fluctuations should be solved in general
context, without using specific features of QCD. Our model does not possess confinement, but
the main sources in our fluctuations are color-singlet; so even after the successful modeling of
confinement the issues of fluctuations are likely to remain. Further studies are called for.

A part of the origin of strong fluctuations may be our use of the chiral limit. It is known that
even small current quark mass significantly increases the pion mass. Since our results on phase
boundaries are very sensitive to the infrared scale k, the details of low-lying excitations should be
important. Hence the obvious extension of the present study is to examine the impact of the explicit
breaking. This should be discussed elsewhere .
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