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By breaking the initial SU(N) symmetry, we derive the Lagrangian governing the dynamics of
the massive scalar particles, which can be treated as the octet of pseudoscalar mesons. The con-
tribution of both the quark-gluon interaction and self-interaction gluon field into the masses of the
octet particles is obtained in the explicit form in the considered approach.
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1. Introduction

The hadronization of the deconfined matter is a very important problem in the physics of
strong interaction. It plays a key role in the description of the hadron spectra arising in various
processes at high energy collisions. The mechanism of conversion of the exact freedom degrees
of the deconfined particles into the approximate freedom degrees of observable hadrons is the
central point the hadronization. Such conversion can be particularly carried out by integrating or
combining the freedom degrees of gluons or quarks in the complete exact QCD Lagrangian by
means of one or another way, that leads to some effective model Lagrangians governing the hadron
dynamics.

The hadronization is a very complicate issue to be solved in the unified approach, starting from
the initial QCD Lagrangian. Therefore, a lot of various models have been already developed, and
continue to be developed, for describing the hadronization of the deconfined matter. They, in very
conditional gradation, form two main approaches with respect to the hadronization problem. The
first one is based on the parton duality of particles in the confined and deconfined matter. In the
framework of this approach hadrons are created in the result of fragmentation of string or cluster
(see, for exaple[1, 2, 3, 4]). The second approach can be named as dynamic (see, for instance
[5, 6]. Studies of Green’s function in the pure gluodynamics have shown that there is some running
gluon mass which can be associated with the hadron mass. Another leg in the dynamics approach
consists with the derivation effective Lagrangian based on the renormalizatin group calculation[7].

2. Gluodymanic Lagrangian

The Lagrangian governing the fermions interacting with the SU(N) gauge field is [8]

L = ∑
f

[
Ψ̄ f γ

µDµ Ψ f − Ψ̄ f m f Ψ f
]
− 1

4
Fa

µν Fµν
a +Lgh, (2.1)

where Aa
µ and Ψ f are the gauge and fermion fields in the Minkowskii (3+1)-dimensional space-

time with coordinates x ≡ xµ = (x0,x) = (x0,x1,x2,x3), m f is a fermion mass, g is the coupling
constant, f means a quark flavor. In Eqs.(2.1) we introduce,

Dµ = i∂µ +g TaAa
µ , Fa

µν∂µAa
ν −∂νAa

µ +g f a
bc Ab

µ Ac
ν , (2.2)

where γν are the Dirac matrices, Ta are the infinitesimal operators satisfying the standard commu-
tative relations and the normalization condition[8], a,b,c = 1 . . .N2− 1 are SU(N) group indices;
Lgh is the ghost Lagrangian, ∂µ = (∂/∂ t,∇).

The Lagrangian (2.1) leads to the Dirac equation:{
iγµ
(
∂µ − ig ·Aa

µ(x) Ta
)
−m f

}
Ψ f (x) = 0, (2.3)

which solution can written as follows[9]

Ψc, f (x) =
∫ d3~p

(2π)3 ∑
σλ

[
uσ (P) a f (P,σ ,λ ,c) θ(P0) + uσ (−P) a f (−P,σ ,λ ,c) θ(−P0)

]
×

exp(−iPµxµ)√
2ε(~p)

{Tl(x0;x) exp}
{

igTa

∫
dxµAa

µ

}
vc, f (x0), (2.4)
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where Pµ is a 4-momentum, uσ (P) are the free Dirac bispinors, normalized by the doubled mass
(ūu = 2m f ). The symbol vc, f (x0) is a vector in the charged space, which also depends on a point in
the Minkowskii space-time. We take vc, f (x0) to be normalized by a condition:

(v†)c′ f ′(x0)vc f (x0) = δ
c
c′δ

f
f ′ . (2.5)

Here, σ and c denote the spin and color variables. The symbol {Tl(x0;x) exp} means that the in-
tegration is to be carried out along the line from the point x0 to the point x such that the factors
in exponent expansion are chronologically ordered from x0 to x, whereas summation with respect
to λ means summing over all the possible such trajectories.. The subscribes c and f enumerate
the colors and flavor states, respectively while the coefficients a f (P,σ ,λ ,c) are related to particles
or anti-particles, and satisfy the standard commutative relations for the Fermi operators under the
quantization.

Substituting Eq.(2.4) into Eq.(2.1) and carrying out some mathematical manipulation[9], we
go to the gluodynamic Lagrangian governing evolution of the mass non Abelian field

L = M2Aµ
a (x)

(
Aa

µ(x)−
∂ λ ∂µ

∂ 2 Aa
λ
(x)

)
− 1

4
Fa

µν Fµν
a +Lgh,

(2.6)

where M, having been interpreted as the filed mass generated by interaction between fermions and
a gauge field, is given by a formula

M2 =
g2

8

∫ d4P
(2π)3 ∑

f ,c,λ σ

∂

∂Pν

{
n f (P,σ ,λ ,c)

Pν
[
δ (P0 + ε(~p)) + δ (P0− ε(~p))

]
ε(~p)

}
. (2.7)

3. Scalar particle Lagrangian

To derive the Lagrangian governing observable particles we need to eliminate the unobservable
degrees of a freedom, and to fix a gauge. We take the Lorenz gauge

∂µAµ
a = 0, (3.1)

because of its relativistic invariance, and since there is no necessity in the ghost fields in this case.
Then, the Lagrangian (2.6) takes a form

L = M2Aµ
a (x) Aa

µ(x)−
1
4

Fa
µν Fµν

a . (3.2)

In the case of the SU(3) symmetry the Lagrangian (3.2) contains 8 independent fields. There-
fore, it is reasonable to relate them with the octet of the pseudosalar mesons, arising in the result
of the hadronization of the deconfined matter. This is some specific confinement situation since
there are only gluons in the Lagrangian (3.2). As for the quark subsystem, the information about it
appears to be incorporated into this Lagrangian by means of the mass term.

To derive the scalar particle Lagrangian we primarily have to go from vector fields to scalar
ones. We carry out it by separating the variables in Aµ

a (x) which correspond to the Minkowskii
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and representation spaces. Let us assume that the hadronization occurs when the SU(3) symmetry
appears to be spontaneously broken so that the fields Aµ

a (x) take a form:

Aµ
a (x) = aµ

a + eµ
ϕa(x), (3.3)

where ϕa(x) are scalar functions, whereas the constant vectors aµ
a are assumed to be orthogonal to

both the unit vector eµ , normalized by condition eµ eµ =−1, and the scalar field gradients ∂µϕa(x)

aµ
a eµ = 0, aa

µ ∂
µ

ϕb(x) = 0. (3.4)

We note, that the Lorentz gauge (3.1) results in the additional orthogonality condition:

eµ
∂µϕa(x) = 0. (3.5)

The fields Aµ
a (x) governed by Eqs.(3.3)- (3.5) means physically, that the scalar fields ϕa(x)

can only propagate along the direction in the Minkowskii space-time, which is perpendicular to
the plane fixed by the orthogonal vectors eµ and a

µ
a . Since these planes are different for the dif-

ferent a, the fields ϕa(x) are independent in terms of their evolution in the Minkowskii space-time.
We should also note that such kinematic restriction in the field propagation leads to arising the
additional mass of the field ϕa(x), as it will be shown below.

Substituting Eq.(3.3) into the Lagrangian (3.2), and taking into account Eqs.(3.1),(3.4)-(3.5),
we derive after direct calculations:

L =
1
2
(∂ µ

ϕ
a(x))(∂µϕa(x))−

1
2
(M 2)a

bϕa(x)ϕb(x), (3.6)

where (M 2)a
b is the matrix of the squared masses which is given by a formula

(M 2)a
b = 2M2(Nc,N f )δ

a
b −g2aµ

c ac′
µ f cs

b f a
c′s. (3.7)

We should note the contribution of both gluon-gluon and quark-interaction interaction into
masses of particles is taken into account in the mass term in Eq.(3.7).

Further, we follow Gell-Mann[10], and take the conservation of the isospin T and strangeness
S, rather than supporting the exact SU(3) symmetry, under hadronization into the octet of the color-
less mesons. This means breaking the initial symmetry SU(3) upto SUS=0(2)

⊗
SUS=1(2)

⊗
U(1)

one. The new symmetry implies that these 8 pseudoscalar mesons, which are π±,π0,K±,K0, K̃0,η ,
including antiparticle (K− and K̃0), can be placed into the strangenessless pion triple, two kaon dou-
blets at S =±1, where S =−1 corresponds to antiparticles, and η meson having the zeroth isospin
and strangeness. Moreover, such a symmetry violation affects on the mass M = M(Nc,N f ) since
its value depends explicitly on numbers of colors Nc and flavors N f .

Therefore, let us establish relation of these pseudoscalar mesons to the fields ϕa by means of
the complex subscribe a⇒ (T,S):

ϕ1(x) = ϕπ+(x) = ϕ(1,0)(x);ϕ2(x) = ϕπ−(x) = ϕ(1,0)(x);ϕ3(x) = ϕπ0(x) = ϕ(1,0)(x);

ϕ4(x) = ϕK+(x) = ϕ(1/2,1)(x);ϕ5(x) = ϕK−(x) = ϕ(1/2,−1)(x);

ϕ6(x) = ϕK0(x) = ϕ(1/2,1);ϕ7(x) = ϕK̃0(x) = ϕ(1/2,−1)(x);ϕ8(x) = ϕη(x) = ϕ(0,0)(x) (3.8)
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where T and S are the isospin and strangeness, respectively.
Such defined fields ϕa do not correspond to the observable mesons since the mass term in the

Lagrangian (3.6) has not diagonalized yet. Upon carrying out the diagonalization[9], we go to a
new basis Φa(x), that the diagonalized Lagrangian of the meson octet takes a form:

L =
1
2
(∂ µ

Φ
a(x))(∂µΦa(x))−

1
2
(m2

oct)
a
bΦa(x)Φb(x), (3.9)

where Φa is the component of the octet: π+,π−,π0,K+K−,K0, K̃0,η0, whereas the mass matrix
(m2

oct)
a
b only consists of the diagonal elements[?], which are the squared masses are

(m2
oct)

a
b = diag(mπ+ ;mπ− ;mπ0 ;mK+ ;mK− ;mK0 ;mK̃0 ;mη). (3.10)

In this way, all of these masses in the Eq.(3.10) are directly related [9] with masses given by
Eq.(3.7).

The Lagrangian (3.9) governs the octet of the massive scalar particles, while the elements of
the mass matrix (m2

oct)
a
b appear to be generated by both the quark-gluon interaction and the self-

interacting gauge fields.

4. Conclusion

On basis of the self-consistent consideration of the dynamics of fermion and boson fields
in the gauge SU(N) model the pure gluodynamic Lagrangian ruling evolution of the massive non-
Abelian fields is derived. Violating the initial SU(3) symmetry in such a gluodynamics Lagrangian,
we obtain the Lagrangian governing the octet of the pseudoscalar mesons. The contribution of the
quark-gluon interaction and self-interacting gluon field into the meson masses has been taken into
account, and has been calculated in the explicit form in the developed approach.
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