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In these proceedings we study the scalar (JPC = 0++, S) and tensor (JPC = 2++, T ) resonance

contributions to the πππ axial-vector form-factor (AFF), relevant for phenomenological studies

of tau decays. Chiral symmetry and its isospin subgroup are key ingredients of our construction,

implemented via a chiral invariant Lagrangian which incorporates S, T and axial-vector (A) res-

onances and the light multiplet of pseudoscalars, the chiral Goldstones (pions, kaons and etas).

Thus, one obtains the right isospin relation between the π0π0π− and π−π−π+ production am-

plitudes. The chiral invariant construction ensures the recovery of the low-energy limit, provided

by Chiral Perturbation Theory (χPT) and the transversality of the current in the chiral limit at

all energies. The amplitudes are further constrained by imposing high-energy constraints, pre-

scribed by Quantum Chromodynamics (QCD). We discuss the improvement of the Breit-Wigner

and Flatté representations for the broad σ scalar resonance provided by the incorporation of the

real logs required by analyticity, à la Gounaris-Sakurai. The aim of this work is to improve the

description of these decay channels oriented to its implementation in the Tauola Monte Carlo and

future Belle data analyses.
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1. Introduction

In this proceedings we discuss the τ → πππντ decay mediated through intermediate T and S

resonances [1], focused on the following four goals:

• Chiral invariance and partial conservation of the axial-vector current (PCAC): longi-

tudinal corrections come naturally suppressed by mq. In addition, as isospin is a subgroup

of the chiral symmetry, our chiral invariant Lagrangian approach yields the right relation be-

tween the π0π0π− and π−π−π+ tau decay form-factors, prescribed by isospin symmetry [2].

• Low-energy limit: the construction of a general chiral invariant Lagrangian ensures the right

low-energy structure and the possibility of matching χPT [3].

• On-shell description: previous works have performed a fine work in describing the decays

through axial-vector and tensor resonances when their intermediate momenta are near their

mass shell [4, 5]. Our outcome reproduces these previous results when the intermediate

resonance becomes on-shell.

• High-energy QCD limit: by imposing high-energy conditions and demanding the behaviour

prescribed by QCD for the form-factors at large momentum transfer [6] we will constrain the

resonance parameters.

Bose symmetry implies that the matrix element H
µ
3π〈π(p1)

a±π(p2)
a±π±(p3)|d̄γµγ5u|0〉 (with

a+ =− and a− = 0) is determined in terms of a transverse form-factors F1(s1,s2,q
2) and a longi-

tudinal AFF FP(s1,s2,q
2) = FP(s2,s1,q

2) in the form

H
µ
3π = iP

µν
T (q)

[

F1(s1,s2,q
2) (p1 − p3)ν + F1(s2,s1,q

2) (p2 − p3)µ

]

+ iqµ FP(s1,s2,q
2) .(1.1)

We will use the definitions q = p1 + p2 + p3, k = p1 + p2, ∆pρ = p
ρ
1 − p

ρ
2 , PT (q)

µν = gµν −
qµ qν/q2, the scalar products s1 = (p2 + p3)

2, s2 = (p3 + p1)
2, s3 = (p1 + p2)

2 = k2, qp j =

(m2
π + q2 − s j)/2, qk = (q2 −m2

π + s3). The matrices R = ∑8
a=0

λ a√
2
Ra contain the lightest U(3)

resonance nonets for R = S,Tµν ,Aµν , with the axial-vector Aµν described in the antisymmetric

representation [7]. The FP and next longitudinal AFF vanish in the chiral limit. All the results in

our analysis [1] refer to π0π0π−. Isospin symmetry relates the π0π0π− and π−π−π+ AFF [1, 2]:

F
π−π−π+

1 (s1,s2,q
2) = F

π0π0π−
1 (s1,s3,q

2)−F
π0π0π−
1 (s2,s3,q

2)−F
π0π0π−
1 (s3,s2,q

2) ,

F
π−π−π+

P (s1,s2,q
2) = F

π0π0π−
P (s1,s3,q

2)+F
π0π0π−
P (s2,s3,q

2) . (1.2)

We will consider interactions between chiral Goldstones and A, S and T resonances. The

non-resonant and V contributions to the AFF are explicitly separated and can be found in [13,

14]. In order to implement these properties we make use of the relevant RχT Lagrangian for this

observable [7]

LRχT = Lnon−R + ∑
R

LR + ∑
R,R′

LRR′ , (1.3)

Lnon−R =
F2

4
〈uµ uµ + χ+ 〉+L

T,SD
1 〈uµ uµ 〉2 +L

T,SD
2 〈uµ uν 〉〈uµuν 〉+L

T,SD
3 〈(uµuµ)

2 〉 ,(1.4)
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LR =
FA

2
√

2
〈Aµν f

µν
− 〉 + cd〈Suµuµ 〉+ cm〈Sχ+ 〉+gT 〈Tµν{uµ ,uν}〉 , (1.5)

LRR′ = λ AS
1 〈{∇µ S,Aµν}uν 〉+λ AT

1 〈{Tµν ,A
να}h

µ
α 〉+λ AT

2 〈{Aαβ ,∇
αT µβ}uµ 〉 , (1.6)

with the covariant derivative ∇α , uµ and hµν containing one and two derivatives of the chiral

Goldstones, f− µν providing the W±
µν field-strength tensors and the chiral tensor χ+ introducing

the chiral breaking due to the quark masses [1, 7]. The O(p4) terms L
T,SD
2 = 2L

T,SD
1 =−L

T,SD
3
2

=

− g2
T

M2
T

in Lnon−R are required to reproduce the correct short-distance behaviour for the forward ππ

scattering in the presence of T resonances [8].

2. Scalar and tensor resonance contributions to πππ–AFF

2.1 Sπ and T π production

The Sπ and T π tree-level production is provided in RχT by the AFF [1]

Sπ–AFF : F
a
Sπ(q

2;s3) =
2cd

Fπ

M2
A

M2
A −q2

, H
a

Sπ(q
2;s3) =

4

Fπ

m2
π

q2(q2 −m2
π)

[

cd(qp)+ cmq2
]

,

Tπ–AFF : F
a
T π(q

2;s3) =−8gT

Fπ

M2
A

M2
A−q2

, G
a
Tπ(q

2;s3) = H
a

Tπ(q
2;s3) = 0 , (2.1)

where a good high-energy vanishing behaviour have been imposed at q2 → ∞ on the Sπ and T π

AFF, in agreement with QCD [6], giving the constraints [1, 9]

Sπ–AFF : λ AS
1 =

√
2cd , Tπ–AFF : FAλ AT

2 =−2FAλ AT
1 = 2

√
2gT . (2.2)

2.2 πππ–AFF via Sπ and T π

Eq. (2.1) provides the S resonance contributions to the π0π0π− AFF’s:

F
π0π0π−
1 (s1,s2,q

2)

∣

∣

∣

∣

S

=
2

3
F

a
Sπ(q

2;s3)GSππ (s3) . (2.3)

The propagation of S and its decay into ππ is given by GSππ(s3) =

√
2[cd(s3 −2m2

π)+2cmm2
π ]

F2
π (M

2
S − s3)

.

The T resonance contribution to the π0π0π− transverse AFF is given by

F
π0π0π−
1 (s1,s2,q

2)

∣

∣

∣

∣

T

=
8
√

2g2
T

3F3
π M2

T

(2s1 − s2 + s3 −4m2
π) (2.4)

−8
√

2

3F3
π

g2
T

M2
T

M2
A

M2
A −q2

[

(kp3)+
s3

3

(

1− 2(kp3)

M2
T

)

− M2
T

M2
T − s3

(

3(q∆p)+
(∆p)2

3
+

(kp3)(∆p)2

3M2
T

)]

.

The contributions to the longitudinal AFF FP are suppressed by m2
π and are given in [1].

An important part of [1] was the study of parametrizations for the ππ final state interactions.

For not-so-broad states such as the a1(1260), and f2(1270) we use Flatté widths. However, for the

σ , analyticity implies that large real logarithms accompany the large imaginary part required by

unitarity, suggesting a propagator modification à la Gounaris-Sakurai (GS) [1, 11, 10]. In addition,

we consider a small σ − f0(980) mixing angle φS =−8◦ [12].

2
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Figure 1: Comparison between the CLEO ’emulated’ data and our prediction for the π0π0π− decay mode.

A similar agreement is shown in [1] for π−π−π+.

3. Phenomenology

Table 1: Numerical values of the parameters used to produce the theoretical spectra in Fig. 1. All the

parameters are in GeV units except for cσ and c f0 , which are dimensionless. More details can be found in

Ref. [1].

Mρ Mρ ′ Γρ ′ Ma1
Mσ M f2

Γ f2
Fπ

0.772 1.35 0.448 1.10 0.8064 1.275 0.185 0.0922

FV FA βρ gT cd cσ M f0
c f0

0.168 0.131 −0.32 0.028 0.026 76.12 1.024 17.7

Our S and T resonance amplitudes are combined with the vector resonance (V ) contribu-

tions [13, 14], which are dominant. This provides the results in Fig. 1. 1 This is an illustration of our

model, not a fit, where we have used the previous determinations of the parameters [8, 11, 15, 16]

in Table 1. A proper determination is postponed to a future work and will probably need of the

fitting of the Dalitz plot, not just one-variable distributions.

Here we show just the π0π0π− channel, as the various contributions are more neatly separated:

V only resonates in the s1 and s2 spectra, and S and T tensors only resonate in the s3 distribution.

The S resonances (in particular the σ ) serve to cure the slight discrepancies with respect to the

data that appear in the low energy regions, Mππ < Mρ [16]. In Fig. 2 we show the ratio of our

theoretical Mπ0π0 =
√

s3 distribution including only the vector contribution V [16]) and its full

result (V +S+T ) in Fig. 1. Tensor produce a negligible effect except at Mπ0π0 ∼ 1.3 GeV, where

one observes a clear f2 structure. However, it is at the end of the spectrum and will need a high

integrated luminosity for the signal to become significant. For the Sππ coupling cd = 26 MeV [11]

we find small S corrections in the left-hand side (lhs) of Fig. 1. On its right-hand side (rhs) we

obtain a large σ effect by increasing cd a factor 3. Thus, large variations in the S parameters will

be correlated and compensated in a fit to data by small modification of the V couplings.

1We thank J. Zaremba for providing the corresponding unnormalized CLEO distributions.
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Figure 2: Ratio of the vector+tensor+scalar and only vector
√

s3 = Mπ0π0 spectral function for τ →
ντ π0π0π− for cd = 26 MeV and cd = 78 MeV (lhs and rhs, respectively).
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Figure 3: Plots for the ratios of the
√

s3 = Mπ0π0 spectral functions for τ → ντ π0π0π−: a) ratio of the

full result and the spectral function without the real part of the logs in the σ propagator for cd = 26 MeV;

b) ratio of the full result and the spectral function without the real part of the logs in the σ propagator for

cd = 78 MeV. In order to better pin down the impact of the scalar propagator structure we only consider the

V + S contribution, dropping T resonances.

The importance of the real logs introduced in the σ propagator á la GS is studied in Fig. 3.a

(Fig. 3.b) for cd = 26 MeV (cd = 78 MeV). For all the other inputs we use Table 1 and take only the

V +S contributions for sake of clarity. Since the scalar contribution is quite small, the impact of the

real logs of the σ propagator in the full spectral distributions is quite suppressed for this τ decay.

We want to emphasize that although a Breit-Wigner σ can provide an equally good description of

the data [16], the aim of the present analysis of the σ à la GS is rather to improve the theoretical

understanding of broad resonances within a Lagrangian formalism and its matching to χPT at low

energies.

In summary, in this article we have computed the S and T contributions to the πππ AFF. by

means a chiral invariant Lagrangian including the relevant A, S, T and chiral Goldstones. This

incorporates chiral and isospin symmetries, ensures the proper low-energy matching with χPT and

4
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PCAC, improving previous descriptions [1, 4, 5]. We have also studied an alternative approach to

the sigma description incorporating an analytical parametrization of the width à la GS [11, 10]:

instead of just the imaginary part iρπ(s) required by unitarity in the K-matrix formalism or the

Breit-Wigner form [16], we considered the full complex logarithm B0 from the analytical Chew-

Mandelstam dispersive integral [1, 10, 11]. Although it requires further refinements, we find the

exploration of this approach for τ → πππντ worthy, as it may help to understand whether it is

possible or not to use a Lagrangian formalism for the description of broad resonances. We extend

Ecker and Zauner’s work on T resonances [8] and plan to include V −T interactions in a similar

way in a future paper dedicated to the study of the e+e− → a2π process [17]. In order to obtain

a good fit to the BaBar data, one will probably need not only the one-dimensional distributions

but also the Dalitz plot. A proper tuning of the Monte Carlo parameters (e.g., the Sππ coupling

cd) should be ready before the beginning of the Belle-II data taking [18]. Its high luminosity will

give us an opportunity to measure both π−π−π+ and π0π0π− decays and study their intermediate

production mechanisms like, e.g., the tiny contribution from the f2π− channel.
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