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Pion–nucleon scattering is one of the most fundamental processes in nuclear and hadronic physics,
with applications that range from the scalar couplings of the nucleon to the long-range part of
two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this
talk, we show how the fruitful combination of dispersion-theoretical methods with modern high-
precision data of hadronic atoms allows for a determination of pion–nucleon scattering amplitudes
at low energies with an unprecedented accuracy. Special attention will be paid to the extraction
of the pion–nucleon σ-term, discussing in detail the current tension with recent lattice results, the
determination of the pion–pion continuum in the electromagnetic nucleon form factors, and the
determination of the low-energy constants of chiral perturbation theory.
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1. Introduction

Pion–nucleon (πN) scattering is the simplest process involving the lightest mesons and
baryons, hence allowing one to test, at low energies, the dynamical constraints imposed by chiral
symmetry. The expansion around the chiral limit of QCD in terms of momenta and quark masses
can be performed systematically in the framework of Chiral Perturbation Theory (ChPT) [5–7].
Nevertheless, at next-to-leading order (NLO), the πN scattering amplitude depends on a list of low-
energy constants (LECs), which, encoding information about heavier degrees of freedom, cannot
be constrained from chiral symmetry. Once determined in one process, these LECs can subse-
quently be used to predict others. For πN scattering this implies applications that reach far into
the domain of nuclear physics, where the same LECs that appear in the πN amplitude govern the
long-range part of the nucleon–nucleon (NN) potential and the three-nucleon force.

In addition, also the partial waves for the crossed channel ππ→ N̄N enter applications that
extend beyond πN. The response of the nucleon to external currents can be analyzed via a t-
channel dispersion relation, and depending on the quantum numbers pion–pion (ππ) intermediate
states frequently provide the dominant contribution to the integral. In particular, for the P-waves,
it provides a determination of the ππ-continuum contribution to the isovector spectral functions of
the nucleon electromagnetic form factors, an essential input for the analysis of the proton radius
puzzle.

Finally, a further strong incentive to study pion–nucleon scattering derives from its relation to
the pion–nucleon σ-term σπN by means of the Cheng–Dashen low-energy theorem (LET) [8, 9],
which requires an analytic continuation of the Born-term-subtracted isoscalar amplitude into the
unphysical region. The σ-term has gathered strong interest beyond the hadron physics community
in recent years, due to its relation to the scalar couplings of the nucleon that are prerequisite for
a consistent interpretation of direct-detection dark matter experiments [10–12] and other searches
for physics beyond the Standard Model [13–15].

2. Roy–Steiner equations for πN scattering

Dispersion relations have repeatedly proven to be a powerful tool for studying processes at
low energies with high precision. They are built upon very general principles such as Lorentz
invariance, unitarity, crossing symmetry, and analyticity.

For ππ scattering, Roy equations [16] are obtained from a twice-subtracted fixed-t dispersion
relation, where the t-dependent subtraction constants are determined by means of s↔ t crossing
symmetry, and performing a partial-wave expansion. This leads to a coupled system of partial-wave
dispersion relations (PWDRs) for the ππ partial waves where the scattering lengths—the only free
parameters—appear as subtraction constants. The use of Roy equations for ππ scattering has led to
a determination of the low-energy ππ scattering amplitude with unprecedented accuracy [17, 18],
which, for the first time, allowed for a precise determination of the f0(500) pole parameters [19,20].

In the case of πN scattering, a full system of PWDRs has to include dispersion relations for two
distinct physical processes, πN → πN (s-channel) and ππ→ N̄N (t-channel), and the use of s↔ t
crossing symmetry will intertwine s- and t-channel equations. Roy–Steiner (RS) equations [21]
are a set of PWDR that combine the s- and t- channel physical region by means of hyperbolic
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dispersion relations. Subtractions are performed at the so-called subthreshold point, which proves
convenient for the matching to ChPT and for the extraction of the σ-term.

The construction of a complete system of RS equations for πN scattering has been presented
in detail in [22, 23] and their solutions have been studied in [4]. These solutions are stabilized
when the S -wave scattering lengths, known precisely from pionic atoms [4,24,25], are imposed as
constraints. Final results for the πN partial waves and subthreshold parameters are shown in [4].

3. Consequences for the πN σ-term

The Cheng–Dashen LET [8,9] relates the Born-term-subtracted isoscalar amplitude evaluated
at the Cheng–Dashen point (ν = 0, t = 2M2

π) to the scalar form factor of the nucleon, evaluated at
momentum transfer t = (p′− p)2 = 2M2

π. In practice, this LET is often rewritten as

σπN = σ(0) = Σd +∆D−∆σ−∆R, (3.1)

where ∆R represents higher-order corrections in the chiral expansion, which are expected to be
small. Here, we use the estimate |∆R|. 2MeV [26], derived from resonance saturation for theO(p4)
LECs. ∆σ measures the curvature in the scalar form factor, ∆D parameterizes contributions to the
πN amplitude beyond the first two terms in the subthreshold expansion, and Σd = F2

π

(
d+

00 +2M2
πd+

01
)
.

As shown in [27], although these corrections are large individually due to strong rescattering in the
isospin-0 ππ S -wave, they cancel to a large extent in the difference. For the numerical analysis we
use ∆D −∆σ = −1.8(2)MeV [23]. Finally, the RS results for the subthreshold parameters d+

00 and
d+

01 in [4] give Σd = 57.9(1.9)MeV, which based on (3.1) translates immediately to [28]

σπN = 59.1(3.5)MeV, (3.2)

which already includes isospin-breaking corrections in the LET [28] (see also [29–31]).
This result implies a significant increase compared to the “canonical value” of σπN ∼

45MeV [32], although already 4.2MeV are due to new corrections to the LET. The remaining
increase of nearly 10MeV is dictated by the new scattering length values from pionic atom exper-
iments. To illustrate the dependence of the σ-term on the scattering lengths used as input to the
solution, we expand Σd linearly around the central values and find

Σd = 57.9(9)MeV +
∑

Is

cIs∆aIs
0+
, c1/2 = 0.24MeV, c3/2 = 0.89MeV, (3.3)

where ∆aIs
0+

gives the deviation from the scattering lengths extracted from pionic atoms in units
of 10−3M−1

π . This linearized version produces Σd = 46(4)MeV if the KH80 scattering lengths are
used, in excellent agreement with the original KH80 value Σd = 50(7)MeV. Nevertheless, our result
for the σ-term seems to be in tension with a series of recent lattice σπN calculations performed near
or at physical pion masses, which yield values

σπN = 38(3)(3)MeV (BMW [33]), σπN = 45.9(7.4)(2.8)MeV (χQCD [34]),

σπN = 37.2(2.6)
(+4.7
−2.9

)
MeV (ETMC [35]), σπN = 35(6)MeV (RQCD [36]). (3.4)

2



P
o
S
(
H
a
d
r
o
n
2
0
1
7
)
1
4
1

Pion-nucleon scattering and the sigma term Jacobo Ruiz de Elvira

These lattice results are in significant tension with the pionic-atom spectroscopy measure-
ments [37–39]: the linear relation between σπN and the πN scattering lengths in (3.3) can be in-
verted so that a given value for the σ-term imposes a constraint in the scattering-length plane [40].
The constraints corresponding to the lattice results of [33–36] compared to the bands extracted
from pionic atoms reflect that while the three bands from the pionic-atom measurements nicely
overlap, the lattice σ-terms favor a much smaller value of ã+ [40]. A lattice calculation of the πN
scattering lengths may be a good way to illuminate the cause of this discrepancy.

An additional way to unravel the tension around the σ-term is to directly compare with the
experimental πN scattering data base. To this end, we computed the πN differential cross sections
dσ/dΩ using the RS solution. The scattering lengths enter as input inside the RS equations, which,
in turn, allows one to generate cross-section solutions in terms of scattering-length values. At very
low energies, the cross section solution can be written in a linearized form similar to (3.3) for the σ-
term. Such a representation can be fit to the cross-section data base leading to the scattering-length
values given in [41] and a πN σ-term

σπN = 58(5)MeV, (3.5)

directly derived from πN scattering data. This value is fully consistent with the result from pionic
atoms [28], and provides further evidence that the discrepancy with lattice calculations cannot be
blamed on deficient πN data input.

4. Nucleon form factor spectral functions

The ππ contribution to the isovector spectral functions of the nucleon electromagnetic form
factors is an immediate application of the RS solution, which can be extracted from the RS t-
channel partial waves and recent experimental results for the pion vector form factor [42–44].

The resulting spectral functions are presented in [45], where the ππ phase shift is consistently
included in the πN amplitude and the pion vector form factor and the potential impact of isospin-
violating corrections are studied. As a further application, we also studied the ππ saturation of the
sum rules for form-factor radii. These sum rules prove to be stable, with a resulting value for the
isovector magnetic radius in good agreement with previous determinations [45]. Taking the neutron
electric radius from the literature [46], we find a slight preference for a small proton radius [45],
albeit the uncertainties in the spectral-function are too large to draw firm conclusions.

5. Matching to chiral perturbation theory

The matching to ChPT is a fundamental application of the RS solution, since it offers a unique
opportunity for a systematic determination of πN LECs [47]. One would expect the chiral ex-
pansion to work best in a kinematic region where no singularities occur, which is precisely the
situation encountered in the subthreshold region. The matching is thus performed by equating the
chiral expansion for the subthreshold parameters to the RS results [4].

The πN amplitude atO(p4) involves 13 LECs, which correspond to the 13 subthreshold param-
eters that receive contributions from LECs in a fourth-order calculation. Inverting the expressions
for the subthreshold parameters, we obtain the LECs and correlation coefficients given in [47].
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At NLO only four LECs, ci, contribute. Another four LECs, d̄i, appear at N2LO, and five more,
ēi, at N3LO. Comparing the different extractions up to N3LO, the convergence pattern for the ci

looks reasonably stable. In contrast, while the N2LO d̄i are of natural size, their values increase
by nearly an order of magnitude when going to N3LO (except for d̄5). The origin of this behav-
ior is due to loop corrections in some subthreshold parameters involving terms that scale with
g2

A(c3 − c4) ∼ −16GeV−1, which are balanced by the large LECs in order to keep the subthreshold
parameters at their physical values. Given such large loop corrections the errors for the LECs at a
given chiral order are negligible compared to the uncertainties to be attached to the chiral expan-
sion itself. Nevertheless, the enhancement of the ci can be understood from resonance saturation,
which for c2−4 is mainly due to the ∆(1232) [48–50]. The magnitude of the extracted LECs is siz-
ably reduced when the ∆ is included explicitly in a consistent power counting up to full one-loop
order [51], leading to an improvement of the convergence pattern in the threshold region.
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