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Using the Fixed Center Approximation to Faddeev equations we have investigated the DKK and
DKK̄ three-body systems, considering that the D∗s0(2317) acts as the heavy cluster in both cases,
generated from the DK interaction in isospin 0. For the DKK̄ system we have found evidence
of a state with I(JP) = 1/2(0−) and mass about 2833− 2858 MeV, above the threshold of
D∗s0(2317)K̄. Our results indicate that this state is dominated by a D f0(980) component, then
it could be searched for in the ππD invariant mass. On the other hand, no clear evidence related
to a state from the DKK interaction is found.
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1. Introduction

The study of three-body systems is one of the starting points in the study of nuclei and nuclear
dynamics. The traditional Quantum Mechanical approach to this problem is based on the Faddeev
equations. The simplicity of the Faddeev equations is deceiving since in practice its evaluation is
very involved and one approximation or another is done to solve them. One popular choice is the
use of separable potentials to construct the two-body scattering amplitudes via the Alt-Grassberger-
Sandhas (AGS) form of the Faddeev equations. Another way to tackle these three-body systems is
using a variational method.

In our work [1] we use the Fixed Center Approximation (FCA) to study systems of three
mesons: the DKK and DKK̄. The main idea behind the FCA is to break the three-body problem in
terms of one heavy cluster, generated by the interaction of two components, while a third particle
(lighter than the cluster) undergoes multiple scattering with the components of the cluster. In both
systems we start the problem with the D∗s0(2317) molecule, formed from the DK interaction in
isospin 0. This interaction is well studied in works using chiral Lagrangians and unitary approach
[2], and is also supported by analysis of lattice QCD data [3]. On top of the D∗s0(2317) cluster,
another K (or K̄) is introduced, which will interact with the D and K components of the molecule.

2. Formalism

The FCA mechanism is illustrated in Fig. 1, representing equations (2.1):

= + + + . . .t1T1
t1

t2
G0

t1

G0

t2

G0t1

Figure 1: Diagrams of Fixed Center Approximation to Faddeev equations.

T1 = t1 + t1 G0 t2 + t1 G0 t2 G0 t1 + ... ⇒ T1 = t1 + t1 G0 T2

T2 = t2 + t2 G0 t1 + t2 G0 t1 G0 t2 + ... ⇒ T2 = t2 + t2 G0 T1
(2.1)

where t1 and t2 are the two-body amplitudes of the external particles with the left or right component
of the cluster, respectively, and G0 is the propagator of the external particle inside the cluster. T1

describes the multiple scattering starting from the left while T2 the one from the right, and the total
three-body amplitude is given by the sum T = T1 +T2.

In the following we describe the DKK̄ system, since the DKK is analogous and details can be
found in Ref. [1]. In charge basis we have three channels represented by T1 in Fig. 1: (1) K−[D+K0],
(2) K−[D0K+] and (3) K̄0[D0K0], when the K̄ interacts with the D component of the cluster [DK];
and represented by T2 we have (4) [D+K0]K−, (5) [D0K+]K− and (6) [D0K0]K̄0, when the K̄
interacts with the K component. The channels (3) and (6) are used as intermediate charge-exchange
steps, an extra feature adopted in our work, as exemplified in the last diagram of Fig. 2. Using this
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notation we have a 6× 6 system of equations. In Fig. 2 we show one example of the diagrams
considered in the (1) → (1) scattering, which is given by Eq. (2.2).

=

K−

K−

D+ K0

D+ K0

D+

D+

K0

K0K−

K−

+

K− D+ K0

K− D+ K0

K̄0
D0+

K− D+ K0

K− D+ K0

K−
D+

Figure 2: Diagrams for the K− multiple scattering of the process K−[D+K0]→ K−[D+K0]. The
white circles indicate two-body amplitudes of DK̄ → DK̄, while the gray bubbles are associated
with three-body amplitudes of DKK̄.

T FCA
11 (s) = t1 + t1 G0 T FCA

41 + t2 G0 T FCA
61 , (2.2)

where t1 and t2 are the D+K− → D+K− and D+K− → D0K̄0 two-body scattering amplitudes,
respectively. In this way we can systematically write the three-body amplitudes in terms of the
two-body amplitudes and the propagator of K̄ inside the cluster:

T FCA
i j (s) =V FCA

i j (s)+
6

∑
l=1

Ṽ FCA
il (s)G0(s)T FCA

l j (s) , (2.3)

where Vi j and Ṽil are the elements of the matrices describing all the transitions between the 6
channels, written in terms of two-body amplitudes of DK→ DK and KK̄→ KK̄ from Refs. [2, 4].
The Vi j matrix contains the elements of single-scattering, while Ṽil contains the cases of double
scattering, when K̄ propagates inside the cluster, described by the G0 propagator, which contains a
form factor related to the wavefunction of the D∗s0(2317) molecule [5].

Isolating the T FCA matrix we get:

T FCA
i j (s) =

6

∑
l=1

[
1−Ṽ FCA(s)G0(s)

]−1

il
V FCA

l j (s) . (2.4)

Finally, to obtain the three-body amplitude DKK̄ → DKK̄ we need to consider that the DK
cluster generates the D∗s0(2317) in isospin 0. In order to do that we project the T FCA matrix in the
state |DK(I = 0)〉= (1/

√
2) |D+K0 +D0K+ 〉, obtaining a sum over the channels (1), (2), (4), (5).

One last consideration to be made is that while T FCA(s) is written as function of the three-
body center-of-mass energy

√
s, the ti(si) amplitudes in V FCA and Ṽ FCA are written in terms of the

two-body center-of-mass energy
√

si, where i stands for DK̄ or KK̄. To do that we use two sets
of transformations to obtain

√
si in terms of

√
s. The one we call “Prescription I” is a standard

transformation from three-body kinematics, common in the literature, while “Prescription II” is
obtained assuming that the kinetic energy in the DK cluster is of the order of its binding energy [1].
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3. Results

In Fig. 3 we show the results of the amplitude squared for the DKK̄ system with the two
prescriptions. We see that a narrow peak develops in both cases, indicating the presence of a state.
We notice that this state is above the D∗s0(2317)K̄ threshold (∼ 2812 MeV), but somewhat close to
the threshold of D f0(980)/a0(980), which would be around 2850 MeV. Motivated by this fact and
the results of Ref. [6] − where a molecular D f0(980) state was found using both QCD Sum Rules
and the solution of Faddeev equations without the Fixed Center Approximation − we investigate
the origin of this state by looking to the KK̄ interaction, since the DK̄ amplitude does not develop
any enhancement in the energy range considered.
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Figure 3: Results for the total DKK̄ amplitude squared using prescriptions I (left) and II (right).

First we should note that the KK̄→ KK̄ scattering generates the a0(980) in isospin 1 (which
also couples strongly to πη in our approach using coupled channels), while the f0(980) is generated
in isospin 0 (which also couples to ππ). In Fig. 4 we compare |TKK̄→KK̄ |2, and we see that around

(a) KK̄ amplitude in I = 1; couples to a0(980). (b) KK̄ amplitude in I = 0; couples to f0(980).

Figure 4: Comparison between KK̄ amplitude squared in isospin 1 and 0.

the resonances peak the intensity of the isospin 0 amplitude is about 2 orders of magnitude stronger
than in isospin 1. This is expected since the πη contribution to the a0(980) is stronger than KK̄,
while the latter is the dominant one for the f0(980), in comparison to ππ (the σ meson, f0(500),
is dominated by ππ in I = 0).
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With that in mind, we write the KK̄ amplitudes in isospin basis and switch off one at a time to
see what happens with the three-body system. We find that if we remove the isospin 1 contribution
the peak in the three-body amplitude remains, only shifting to the right since it becomes less bound,
while if we remove the f0(980) contribution from isospin 0 the peak disappears and the intensity
of |TDKK̄ |2 is reduced by about two orders of magnitude, as shown in Table 1.

Table 1: Comparison between position and intensity of the peaks found in the DKK̄ amplitude.

Prescription I Prescription II
√

s |T |2 √
s |T |2

Total 2833 6.8 ×106 2858 1.8 × 107

I = 1 only 2842 7.7 × 104 2886 7.8 × 104

In view of this observation we conclude that the isospin 0 contribution is essential to generate
the three-body state, and the proximity to the D f0(980) threshold suggests that the KK̄ clusters
around the f0(980), then this state would be mostly made of D f0(980), with small contributions
of Da0(980) and D∗s0(2317)K̄. This feature, as well as the peak position, is in fair agreement with
the results of Ref. [6], where it was found MD f0 = (2926± 237) MeV with QCD Sum Rules and
MD f0 = 2890 MeV with the solution of the Faddeev equations without FCA.

On the other hand, for the DKK system we do not find a clear evidence of a three-body state.
We see in Fig. 5 that broad and irregular structures develop. Both amplitudes decrease around
2812 MeV, which corresponds to the D∗s0(2317)K threshold, and with “Prescripiton I” there is
an enhancement below this threshold. However, it seems that the KK repulsion is sizable and
even though the DK interaction is attractive, it is not enough to bind the three mesons together.
Further investigation of the DKK system with the methods of Ref. [6] or other approaches would
be interesting to confirm this result.
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Figure 5: Results for the total DKK amplitude squared using prescriptions I and II.
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Conclusions

In this work [1] we have used the Fixed Center Approximation (FCA) to Faddeev equations,
including charge exchange diagrams, to study the DKK̄ and DKK three-body systems. In both
cases the D∗s0(2317) is taken as the heavy cluster, generated from the DK interaction in isospin 0,
and another K̄ (or K) is added, which is allowed to undergo multiple scattering with the cluster
components. Uncertainties were estimated with the use of two different prescriptions to obtain the
energy in the two-body frame as a function of the total energy of the system.

According to our results, the DKK̄ system generates a three-body state with quantum numbers
I(JP) = 1/2(0−), and mass about 2833−2858 MeV, dominated by a D f0(980) component, where
the f0(980) is implicitly contained in the KK̄ interaction in isospin 0. These results are compatible
with other methods, one using QCD Sum Rules and another with the full Faddeev equations. Since
the f0(980) also couples to ππ , this state could be seen in the π π D invariant mass distribution.

The DKK system, however, does not seem to bind. This is mostly due to the KK repulsion,
which seems to be of the same magnitude of the attractive DK interaction. Further investigation of
the DKK system with different methods would be interesting and welcome.
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