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We present a determination of the mass, width and coupling of the strange resonances appear-
ing in pion-kaon scattering below 1.8 GeV, namely the much debated K∗0 (800) or κ , the scalar
K∗0 (1430), the K∗(892) and K∗(1410) vectors, the spin-two K∗2 (1430) as well as the spin-three
K∗3 (1780). The parameters of each resonance are determined using a direct analytic continua-
tion of the pion-kaon partial waves by means of Padé approximants, thus avoiding any particular
model description of their pole positions and residues, while taking into account the analytic
requirements imposed by dispersion relations.
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1. Introduction

A reliable determination of strange resonances is by itself relevant for hadron spectroscopy
and their own classification in multiplets, as well as for our understanding of intermediate energy
QCD and the low-energy regime through Chiral Perturbation Theory. In addition πK scattering
and the resonances that appear in it are also of interest because most hadronic processes with net
strangeness end up with at least a πK pair that contributes decisively to shape the whole ampli-
tude through final state interactions. Moreover, the inelastic resonances are not reachable through
single-channel dispersion relations, so that it is not possible to obtain a direct model independent
calculation of their parameters.

Very often the analyses of these resonances have been made in terms of crude models, which
make use of specific parameterizations like isobars, Breit-Wigner forms or modifications, which
assume the existence of some simple background and a model dependent relation between the pole
position and residue. As a result, resonance parameters suffer from large model dependencies and
may be process dependent. Thus, the statistical uncertainties in the resonance parameters should
be accompanied by systematic errors that are usually ignored.

For the above reasons there is a growing interest in methods based on analyticity properties to
extract resonance pole parameters from data in a given energy domain. They are based on several
approaches: conformal expansions to exploit the maximum analyticity domain of the amplitude [1],
Laurent [2], Laurent-Pietarinen [3] expansions, Padé approximants [4, 5], or the rigorous dispersive
approaches [6], note that the latter are in practice limited to

√
s ∼1 GeV. They all determine the

pole position without assuming a particular model for the relation between the mass, width and
residue. In this sense they are model independent analytic continuations to the complex plane.

These analytic methods require as input some data description. It has been recently shown [7]
that in the case of πK scattering data [8], which are the source for several determinations of strange
resonances, they do not satisfy well Forward Dispersion Relations (FDR) up to 1.8 GeV. This means
that in the process of extracting data by using models, they have become in conflict with causality.
Nevertheless, in [7] the data were refitted constrained to satisfy those FDR and following [9] a
careful systematic and statistical error analysis was provided. In [5] we made use of the Padé
approximants method in order to extract the parameters of all resonances appearing in those waves.

2. Method and results

Using the parameterizations obtained in [7], we have a set of equations that are compatible with
FDRs in the real axis, so that we can use Padé approximants to perform the analytic continuation
to the complex plane. The PN

M(s,s0) = QN(s,s0)/RM(s,s0) Padé approximants of a function F(s)
around the point s0 is a rational function that satisfies PN

M(s,s0) = F(s)+O((s− s0)
M+N+1), with

QN(s,s0) and RM(s,s0) polynomials in s of order N and M, respectively. In the case of one pole in
the complex plane the formula reads

PN
1 (s,s0) =

N−1

∑
k=0

ak(s− s0)
k +

aN(s− s0)
N

1− aN+1
aN

(s− s0)
, (2.1)

where an =
1
n! F

(n)(s0), and the position and residue of the pole are
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sN
p = s0 +

aN

aN+1
, ZN =− (aN)

N+2

(aN+1)N+1 . (2.2)

If there is more than one pole inside the disk of convergence of the approximant, one has to change
the order of the polynomial RM(s,s0), both the formula of the pole and the residue change, but the
parameters of the approximant are still directly related to the Taylor expansion.

With this simple analytic continuation we can go to the next continuous Riemann sheet and
find not only the elastic but also inelastic resonances. We define the position of the pole as √sp =

M− iΓ/2, where the sequence is truncated when the different values of the poles sN
p and sN+1

p are
much smaller than the statistical uncertainty obtained by running a montecarlo simulation for the
fit parameters.

The systematic errors of each pole are calculated using different parameterizations fulfilling
FDRs so that we take into account the different values of the derivatives produced by slight changes
of the parameterizations in the real axis. For example, for the K∗0 (800) or κ resonance we have
used three different parameterizations: Schenk-like or Chew-Mandelstam parameterization and a
conformal mapping. All them reproduce the required analytic structures, having slightly different
values on the real axis that produce deviations of the pole position, this reflects that a wide reso-
nance like the κ cannot be described through simple models due to the instability of the analytic
continuation.

In the case of the κ resonance, which is the lightest strange resonance, the calculation is
compatible with the most rigorous dispersive result, showing the good agreement between both
analytic methods. Our result is √sp = (670± 18)− i(295± 28) MeV, while the result estimated
by the PDG [10] is √sp = (682± 29)− i(274± 12) MeV. The values obtained for the rest of the
strange resonances appearing below 1.8 GeV are listed in Table 1.
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Figure 1: Final result for the κ pole. Other references are taken from the RPP compilation [10].

Note that even though our description of the K∗(892) is compatible with the data in that region,
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the pole position we obtain (Table 1) is slightly different from the values listed in the PDG. The
reason is that most of the values listed there are not the pole position parameters but the Breit-
Wigner ones.

As explained before, this method is also suitable for the calculation of non-elastic resonances,
which poles are not reachable through a dispersive approach, this is the case of the K∗0 (1430),
K∗(1410), K∗2 (1430) and K∗3 (1780) resonances. In Fig. 2, we show the spread of results listed in
the PDG for every resonance, while in Table 1 we compare our results with the average given by
the PDG.

In the case of the K∗(1410), which branching ratio to Kπ is 7%, the errors are produced
mostly due to the uncertainties of solutions of [5]. The best result for the vector partial wave is
incompatible with the result of Aston et al., which is the one used to determine the PDG values.

For high angular momentum (l = 2,3) partial waves there is a remarkable spread of results,
produced probably by the different models and Breit-Wigner-like descriptions, barrier factors, etc...
. Instead, our approach avoids such a model dependent assumption, and it does not produce de-
viations from the pole position due to barrier factors or other kinematics included in those model
dependent fits.
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3. Summary

Using the data parameterizations constrained to satisfy the dispersion relations obtained in [7]
(see talk [11] at Hadron 2017) we have calculated in [5] the parameters of the strange resonances
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Table 1: Resonance parameters.

Resonance Padé √sp (MeV) PDG √sp (MeV)
K∗0 (1430) (1431±6)- i(110±19) (1425±50)- i(135±40)
K∗(892) (892±1)-i(29±1) (892±1)- i(25±1)
K∗(1410) (1368±38)-i(106+48

−59) (1421±9)- i(118±18)
K∗2 (1430) (1424±4)-i(66±2) (1432±1)- i(55±3)
K∗3 (1780) (1754±13)-i(119±14) (1776±7)- i(80±11)

appearing up to 1.8 GeV thanks to the method of the Padé approximants. The values obtained
for the parameters of the resonances are in agreement with other works in the PDG, although our
approach is based on a data analysis consistent with analyticity and makes use of a method that
does not include any model to extract the parameters, providing a realistic estimate of systematic
uncertainties.

Apart from the inelastic resonances we have also determined the mass, width and coupling to
Kπ for the conflictive K∗0 (800) or κ resonance, still not confirmed according to the PDG, while
taking care of the systematic uncertainties for its parameters.
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