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1. Introduction: the Three Neutrino Mixing

It was announced on February 24 this year (2017) that The Pontecorvo Prize for 2016 was
awarded to Prof. Yifang Wang (from the Daya Bay Collaboration), Prof. Soo-Bong Kim (from
RENO Collaboration ) Prof. K. Nishikawa (from T2K Collaboration) ”For their outstanding contri-
butions to the study of the neutrino oscillation phenomenon and to the measurement of the Theta13
mixing angle in the Daya Bay, RENO and T2K experiments.” As is well known, the relatively
large value of the “reactor” (or “CHOOZ”) angle θ13 ∼= 0.15 measured in the Daya Bay, RENO
and Double Chooz experiments, indications for which were obtained first in the T2K experiment
1, opened up the possibility to search for CP violation effects in neutrino oscillations. Determining
the status of CP symmetry in the lepton sector is one of the principal goals of the program of current
and future research in neutrino physics. Information on leptonic Dirac CP violation is presently
provided by the T2K and NOνA neutrino oscillation experiments using as input the reactor neu-
trino data on θ13 (see, e.g., [1]), and from analyses of the global neutrino oscillation data (see, e.g.,
[2, 3]). In the future it is expected to be provided principally by the planned DUNE [4] and T2HK
[5] experiments.

Other goals of primal importance of the program of research in neutrino physics, which ex-
tends beyond 2030, include [1]:
i) determination of the status of lepton charge conservation and the nature - Dirac or Majorana -
of massive neutrinos (which is one of the most challenging and pressing problems in present day
elementary particle physics);
ii) determination of the spectrum neutrino masses possess, or neutrino mass ordering;
iii) determination of the absolute neutrino mass scale, or min(m j).
A successful realisation of this program 2 is of fundamental importance for making progress in
understanding the origin of neutrino masses and mixing and its possible relation to new beyond the
Standard Model (BSM) physics.

All compelling neutrino oscillation data is compatible with 3-neutrino mixing in vacuum,
which we are going to consider in what follows:

LCC =− g√
2 ∑

l=e,µ,τ

lL(x)γανlL(x)W α†(x)+h.c. , νlL(x) =
3

∑
j=1

Ul jν jL(x) , (1.1)

where νlL(x) are the flavour neutrino fields, ν jL(x) is the left-handed (LH) component of the field
of the neutrino ν j having a mass m j, and U is a unitary matrix - the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) neutrino mixing matrix [6, 7, 8], U ≡UPMNS.

In the case of 3 light neutrinos, the 3×3 unitary neutrino mixing matrix U can be parametrised,
as is well known, by 3 angles and, depending on whether the massive neutrinos ν j are Dirac or
Majorana particles, by one Dirac, or one Dirac and two Majorana, CP violation (CPV) phases [9]:

U = V P , P = diag(1,ei α21
2 ,ei α31

2 ) , (1.2)

1For a review of the Daya Bay, RENO, Double Chooz and T2K data on θ13 see, e.g., [1].
2See, e.g., [1] for a rather detailed list of current and planned experiments that are foreseen to contribute to the

comprehensive long-term program of research in neutrino physics.
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Parameter Best fit value 2σ range 3σ range

sin2
θ12/10−1 2.97 2.65−3.34 2.50−3.54

sin2
θ13/10−2 (NO) 2.15 1.99−2.31 1.90−2.40

sin2
θ13/10−2 (IO) 2.16 1.98−2.33 1.90−2.42

sin2
θ23/10−1 (NO) 4.25 3.95−4.70 3.81−6.15

sin2
θ23/10−1 (IO) 5.89 3.99−4.83⊕5.33−6.21 3.84−6.36

δ/π (NO) 1.38 1.00−1.90 0−0.17⊕0.76−2

δ/π (IO) 1.31 0.92−1.88 0−0.15⊕0.69−2

∆m2
21/10−5 eV2 7.37 7.07−7.73 6.93−7.96

∆m2
31/10−3 eV2 (NO) 2.56 2.49−2.64 2.45−2.69

∆m2
23/10−3 eV2 (IO) 2.54 2.47−2.62 2.42−2.66

Table 1: The best fit values, 2σ and 3σ ranges of the neutrino oscillation parameters obtained in the global
analysis of the neutrino oscillation data performed in [2] (The Table is taken from ref. [11]).

where α21,31 are the two Majorana CPV phases and in the “standard” parametrisation [1] the matrix
V is given by:

V =


c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

 . (1.3)

In eq. (1.3), ci j = cosθi j, si j = sinθi j, the angles θi j = [0,π/2), and δ = [0,2π] is the Dirac CPV
phase. It follows from the current data that the three massive neutrinos ν1,2,3 should have masses
not exceeding approximately 0.5 eV, m1,2,3 ∼< 0.5 eV. On the basis of the existing neutrino data it
is impossible to determine whether the massive neutrinos ν j are Dirac or Majorana fermions.

In the case of 3-neutrino mixing, oscillations involving all flavour neutrinos νl (antineutrinos
ν̄l), νl ↔ νl′ (ν̄l ↔ ν̄l′), l, l′ = e,µ,τ , are possible. The 3-neutrino oscillation probabilities P(νl →
νl′) and P(ν̄l → ν̄l′) are functions of the neutrino energy, E, the source-detector distance L, of the
elements of U and, for relativistic neutrinos used in all neutrino experiments performed so far, of
the two independent neutrino mass squared differences ∆m2

21 6= 0 and ∆m2
31 6= 0, (∆m2

jk ≡m2
j−m2

k)
present in the case of 3-neutrino mixing (see, e.g., ref. [10]).

The existing data, accumulated over many years of studies of neutrino oscillations, allow us
to determine ∆m2

21, θ12, and |∆m2
31(32)|, θ23 and θ13, with a relatively high precision [2, 3]. Since

2013 there are also persistent hints that the Dirac CPV phase δ has a value close to 3π/2 (see
[12]). The best fit values (b.f.v.) and the 2σ and 3σ allowed ranges of ∆m2

21, s2
12, |∆m2

31(32)|,
s2

23, s2
13 and δ , found in the latest analysis of global neutrino oscillation data performed in [2] are

given in Table 1. Similar results were obtained in ref. [3]. In both analyses [2, 3] the authors
find, in particular, that sin2

θ23 = 0.5 lies outside the 2σ range allowed by the current data, but
is within the 3σ allowed interval. Both groups also find that the best fit value of the Dirac CPV
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phases δ is close to 3π/2: in [2], for example, the authors find δ = 1.38π (1.31π) for ∆m2
31(32) > 0

(∆m2
31(32) < 0). The absolute χ2 minimum takes place for ∆m2

31(32) > 0, the local minimum in
the case of ∆m2

31(32) < 0 being approximately by 0.7σ higher. According to ref. [2], the CP
conserving value δ = 0, or 2π , is disfavored at 2.4σ (3.2σ ) for ∆m2

31(32) > 0 (∆m2
31(32) < 0); the

CP conserving value δ = π in the case of ∆m2
31(32) > 0 (∆m2

31(32) < 0) is statistically approximately
2.0σ (2.5σ ) away from the best fit value δ ∼= 1.38π (1.31π). In what concerns the CP violating
value δ = π/2, it is strongly disfavored at 3.4σ (3.9σ ) for ∆m2

31(32) > 0 (∆m2
31(32) < 0) 3. At

3σ , δ/π is found to lie in the case of ∆m2
31(32) > 0 (∆m2

31(32) < 0) in the following intervals [2]:
(0.00−0.17(0.16))⊕(0.76(0.69)−2.00)). The results on δ obtained in [3] differ somewhat from,
but are compatible at 1σ C.L. with, those found in [2].

It follows also from the results quoted in Table 1 that ∆m2
21/|∆m2

31(32)| ∼= 0.03. We have
|∆m2

31| = |∆m2
32 − ∆m2

21| ∼= |∆m2
32|. The angle θ12 is definitely smaller than π/4: the value of

θ12 = π/4, i.e., maximal solar neutrino mixing, is ruled out at high confidence level by the data:
cos2θ12 ≥ 0.29 at 99.73% C.L. The quoted results imply also that the value of θ23 can deviate by
approximately ±0.1 from π/4, θ12 ∼= π/5.4 and that θ13 ∼= π/20. Thus, the pattern of neutrino
mixing differs drastically from the pattern of quark mixing.

Apart from the hint that the Dirac phase δ ∼ 3π/2, no other experimental information on the
Dirac and Majorana CPV phases in the neutrino mixing matrix is available at present. Thus, the
status of CP symmetry in the lepton sector is essentially unknown. With θ13 ∼= 0.15 6= 0, the Dirac
phase δ can generate CP violating effects in neutrino oscillations [9, 13], i.e, a difference between
the probabilities of the νl → νl′ and ν̄l → ν̄l′ oscillations, l 6= l′ = e,µ,τ . The magnitude of CP
violation in νl → νl′ and ν̄l → ν̄l′ oscillations, l 6= l′ = e,µ,τ , is determined by [14] the rephasing
invariant JCP, associated with the Dirac CPV phase in U :

JCP = Im
(
Uµ3U∗e3Ue2U∗µ2

)
. (1.4)

It is analogous to the rephasing invariant associated with the Dirac CPV phase in the CKM quark
mixing matrix [15]. In the standard parametrisation of the neutrino mixing matrix (1.3), JCP has
the form:

JCP ≡ Im(Uµ3U∗e3Ue2U∗µ2) =
1
8

cosθ13 sin2θ12 sin2θ23 sin2θ13 sinδ . (1.5)

Thus, given the fact that sin2θ12, sin2θ23 and sin2θ13 have been determined experimentally with a
relatively high precision, the size of CP violation effects in neutrino oscillations depends essentially
only on the magnitude of the currently not well determined value of the Dirac phase δ . The current
data implies 0.026(0.027)|sinδ | . |JCP| . 0.035|sinδ |, where we have used the 3σ ranges of
sin2

θ12, sin2
θ23 and sin2

θ13 given in Table 1. For the current best fit values of sin2
θ12, sin2

θ23,
sin2

θ13 and δ we find in the case of ∆m2
31(2) > 0 (∆m2

31(2) < 0): JCP ∼= 0.032sinδ ∼= − 0.030
(JCP ∼= 0.032sinδ ∼=− 0.027). Thus, if the indication that δ has a value close to 3π/2 is confirmed
by future more precise data, i) the JCP factor in the lepton sector would be approximately by 3
orders of magnitude larger in absolute value than the corresponding JCP factor in the quark sector,
and ii) the CP violation effects in neutrino oscillations would be relatively large and observable.

3The quoted confidence levels for δ = 0,π and π/2 are all with respect to the absolute χ2 minimum.
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If the neutrinos with definite masses νi, i = 1,2,3, are Majorana particles, the 3-neutrino
mixing matrix contains two additional Majorana CPV phases [9]. However, the flavour neutrino
oscillation probabilities P(νl → νl′) and P(ν̄l → ν̄l′), l, l′ = e,µ,τ , do not depend on the Majorana
phases [9, 16]. The Majorana phases can play important role, e.g, in |∆L| = 2 processes like
neutrinoless double beta ((ββ )0ν -) decay (A,Z)→ (A,Z + 2)+ e−+ e−, L being the total lepton
charge, in which the Majorana nature of massive neutrinos νi manifests itself (see, e.g, refs. [10,
17]).

Our interest in the CPV phases present in the neutrino mixing matrix is stimulated also by the
intriguing possibility that the Dirac phase and/or the Majorana phases in UPMNS can provide the CP
violation necessary for the generation of the observed baryon asymmetry of the Universe (BAU)
[18] (for specific models in which this possibility is realised see, e.g., [19]).

Understanding the origin of the patterns of neutrino mixing and of neutrino mass squared
differences, revealed by the data obtained in the neutrino oscillation experiments is one of the most
challenging problems in neutrino physics. It is part of the more general fundamental problem in
particle physics of understanding the origins of flavour, i.e., of the patterns of quark, charged lepton
and neutrino masses, and of the quark and lepton mixing.

In this article we will review aspects of the SYMMETRY approach to understanding the form
of neutrino mixing, which is based on non-Abelian discrete flavour symmetries and is widely ex-
plored at present (see, e.g., [20, 21, 22] and references therein). One of the most striking features
of this approach is that it leads to specific correlations between the values of at least some of the
mixing angles of the neutrino mixing matrix UPMNS and, either to specific fixed values of CPV
phases present in UPMNS, which are “trivial” (e.g., δ = 0 or π , α21 = α31 = 0), ( see, e.g., [22]),
or to a correlation between the values of the neutrino mixing angles and of the cosine of the Dirac
CPV phase δ of UPMNS [23, 24, 25, 26] 4, i.e., to a “sum rule” for cosδ . As a consequence of this
correlation one obtains predictions for the value of δ and, correspondingly, for the JCP factor and
for the CP violating effects in neutrino oscillations. These predictions depend, in particular, on the
the underlying discrete symmetry used to derive the observed pattern of neutrino mixing and on
the type of breaking of the symmetry, necessary to reproduce the measured values of the neutrino
mixing angles. We will review also the predictions for δ and the JCP factor in the cases of widely
discussed underlying symmetry patterns of the PMNS matrix and the prospects of testing these
predictions in future planned neutrino oscillation experiments.

2. Discrete Symmetry Approach to Neutrino Mixing
(The Quest for Nature’s Message)

We believe, and we are not alone in holding this view, that with the observed pattern of neutrino
mixing Nature is “sending” us a Message. The Message is encoded in the values of the neutrino
mixing angles, leptonic CPV phases in the PMNS matrix and neutrino masses. We do not know at
present what is the content of Nature’s Message. However, on the basis of the current ideas about
the possible origins of the observed pattern of neutrino mixing, the Nature’s Message can have two

4In the case of Majorana massive neutrinos one can obtain (under specific conditions) also correlations between the
values of the two Majorana CPV phases present in UPMNS and of the three neutrino mixing angles and of the Dirac CPV
phase [23].
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completely different contents, each of which can be characterised by one word: ANARCHY or
SYMMETRY. In the ANARCHY approach [27] to understanding the pattern of neutrino mixing it
is assumed that Nature “threw dice” when Nature was “choosing” the values of the neutrino masses,
mixing angles and leptonic CPV phases. The main prediction of the ANARCHY explanation of
the pattern of neutrino mixing is the absence of whatever correlations between the values of the
neutrino mixing angles, between the values of the neutrino mixing angles and the CPV phases and
between the values of the neutrino masses, all of them being random quantities. In contrast, one of
the most characteristic prediction of the SYMMETRY approach to neutrino mixing is the existence
of correlations between the values of at least some of the observables (angles, CPV phases) of the
the neutrino mixing matrix.

Within the SYMMETRY approach, the observed pattern of neutrino mixing can be naturally
understood on the basis of specific class of symmetries - the class of non-Abelian discrete (finite)
flavour symmetries (see, e.g., [20, 21, 22]). Thus, the specific form of the neutrino mixing can have
its origin in the existence of new fundamental symmetry in the lepton sector. The most distinctive
feature of the approach to neutrino mixing based on non-Abelian discrete flavour symmetries is the
predictions i) of the values of some of the neutrino mixing angles and leptonic CPV phases, and/or
ii) of existence of correlations between the values of at least some the neutrino mixing angles and/or
between the values of the neutrino mixing angles and the Dirac CPV phase in the PMNS matrix,
etc. (see, e.g., [22, 23, 24, 25]) 5. Most importantly, these predictions and predicted correlations,
and thus the discrete symmetry approach itself, can be tested experimentally (see, e.g., [23] and
[11, 24, 33, 34, 35]).

2.1 Symmetry Forms of Neutrino Mixing

The observed pattern of neutrino mixing in the reference 3-neutrino mixing scheme we are
going to consider in what follows is characterised, as we have seen, by two large mixing angles θ12

and θ23, and one small mixing angle θ13: θ12 ∼= 33◦, θ23 ∼= 45◦±6◦ and θ13 ∼= 8.4◦. These values
can naturally be explained by extending the Standard Theory (ST) with a flavour symmetry corre-
sponding to a non-Abelian discrete (finite) group G f . This symmetry is supposed to exist at some
high-energy scale and to be broken at lower energies to residual symmetries of the charged lepton
and neutrino sectors, described respectively by subgroups Ge and Gν of G f . Flavour symmetry
groups G f that have been used in this approach to neutrino mixing and lepton flavour include S4,
A4, T ′, A5, Dn (with n = 10,12), ∆(27), the series ∆(6n2), to name several 6 (see, e.g., ref. [21]
for definitions of these groups and discussion of their properties 7). The numbers of elements, of
generators and of irreducible representations of the groups S4, A4, T ′, A5, D10 and D12 are given
in Table 2. The choice of the non-Abelian discrete groups S4, A4, T ′, A5, etc. is related, in par-

5Combining the discrete symmetry approach with the idea of generalised CP invariance [28, 29] – a generalistaion
of the standard CP invariance requirement – allows to obtain predictions also for the Majorana CPV phases in the PMNS
matrix in the case of massive Majorana neutrinos (see, e.g., [11, 30, 31, 32] and references quoted therein).

6Some of the groups T ′, A5, etc. can be and have been used also for a unified description of the quark and lepton
flavours, see, e.g., refs. [36] and references quoted therein.

7S4 is the group of permutations of 4 objects and the symmetry group of the cube. A4 is the group of even permu-
tations of 4 objects and the symmetry group of the regular tetrahedron. T ′ is the double covering group of A4. A5 is the
icosahedron symmetry group of even permutations of five objects, etc. All these groups are subgroups of SU(3) and this
will be assumed to hold for G f considered by us.
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Group Number of elements Generators Irreducible representations

S4 24 S, T , U 1, 1′, 2, 3, 3′

A4 12 S, T 1, 1′, 1′′, 3

T ′ 24 S, T , R 1, 1′, 1′′, 2, 2′, 2′′, 3

A5 60 S, T 1, 3, 3′, 4, 5

D10 20 A, B 11, 12, 13, 14, 21, 22, 23, 24

D12 24 A, B 11, 12, 13, 14, 21, 22, 23, 24, 25

Table 2: Number of elements, generators and irreducible representations of some discrete groups.

ticular, to the fact that they describe symmetries with respect to rotations on fixed large mixing
angles and, correspondingly, lead to values of the neutrino mixing angles θ12 and θ23, which can
differ from the measured values at most by sub-leading perturbative corrections, with θ13 typically
(but not universally) predicted to be zero. For instance, the groups A4, S4 and T ′ are commonly
utilised to generate tri-bimaximal (TBM) mixing [37]; the group S4 can also be used to generate
bimaximal (BM) mixing 8 [39]; A5 can be utilised to generate golden ratio type A (GRA) [40]
mixing; and the groups D10 and D12 can lead to golden ratio type B (GRB) [41] and hexagonal
(HG) [42] mixing. For all these symmetry forms the neutrino mixing matrix U◦ν has the form:
U◦ν = R23(θ ν

23)R13(θ ν
13)R12(θ ν

12) with θ ν
23 =−π/4 and θ ν

13 = 0:

U◦ν = R23
(
θ ν

23 =−π/4
)

R12 (θ ν
12) =


cosθ ν

12 sinθ ν
12 0

− sinθ ν
12√

2
cosθ ν

12√
2
− 1√

2

− sinθ ν
12√

2
cosθ ν

12√
2

1√
2

 . (2.1)

The value of the angle θ ν
12, and thus of sin2

θ ν
12, depends on the symmetry form of U◦ν . For the

TBM, BM, GRA, GRB and HG forms we have: i) sin2
θ ν

12 = 1/3 (TBM), ii) sin2
θ ν

12 = 1/2 (BM),
iii) sin2

θ ν
12 = (2 + r)−1 ∼= 0.276 (GRA), r being the golden ratio, r = (1 +

√
5)/2, iv) sin2

θ ν
12 =

(3− r)/4∼= 0.345 (GRB), and v) sin2
θ ν

12 = 1/4 (HG).
In the approach under discussion it is standardly assumed that the LH neutrino fields, νl̃L(x),

and the LH components of the charged lepton fields (in the basis in which charged lepton mass
term is not diagonal) l̃L(x), which form an SU(2)L doublet in the Standard Theory, are assigned
to the same r-dimensional irreducible unitary representation ρr(g f ) of the Group G f , g f being an
element of G f . In the cases of G f = A4, S4, T ′ and A5, which possess 3-dimensional irreducible
representations, ρ(g f ) is standardly taken to be a 3-dimensional irreducible unitary representation
3, ρr(g f ) = ρ3(g f ). This is equivalent to the assumption of unification of the three lepton families
at some high energy scale. We are going to consider this choice in what follows.

8Bimaximal mixing can also be a consequence of the conservation of the lepton charge L′ = Le− Lµ − Lτ (LC)
[38], supplemented by µ− τ symmetry.
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At low energies the flavour symmetry G f has necessarily to be broken so that the three lepton
flavours can be distinguished and the electron, muon and tauon as well as the three neutrinos with
definite mass ν1, ν2 and ν3, can get different masses. Thus, G f is broken to different residual
symmetries Ge and Gν , Ge 6= Gν , of the charged lepton and neutrino mass terms, respectively
9. Possible discrete symmetries Ge of the charged lepton mass term (leaving MeM†

e invariant, Me

being the charged lepton mass matrix in left-right (L-R) convention) are: i) Ge = Zn, with integer
n≥ 2, or ii) Zm×Zk, with integer m, k≥ 2. The maximal symmetry Gν of the Majorana mass term
of the LH flavour neutrino fields νl̃L(x) (leaving Mν and M†

νMν invariant, Mν being the mass matrix
in R-L convention) is the Z2×Z2 (sometimes referred to as the Klein four group) symmetry. Gν

can obviously be just Z2. The subgroup Ge, in particular, can be trivial.
For fixed G f and irreducible representation ρr(g f ), non-trivial residual symmetries constrain

the forms of the 3×3 unitary matrices Ue and Uν , which diagonalise the charged lepton and neu-
trino mass matrices, and the product of which represents the PMNS matrix:

UPMNS = U†
e Uν . (2.2)

Thus, the residual symmetries constrain also the form of UPMNS.
The TBM form of U◦ν (see eq. (2.1)) can originate from G f = S4 symmetry with residual

symmetry Gν = Z2× Z2; it can be obtained also from a G f = A4 symmetry with Gν = Z2 and
imposing additional “accidental” µ − τ (i.e., Z2) symmetry of the neutrino Majorana mass matrix
Mν (see, e.g., [22] and references quoted therein). The group G f = S4 can also be used to generate
the BM from of U◦ν (e.g., by choosing Gν = Z2 combined with an accidental µ − τ symmetry)
[43, 25]. In all these cases Uν = U◦ν P◦, P◦ = P◦(ξ21,ξ31) being a diagonal matrix containing two
phases ξ21 and ξ31 which contribute to the Majorana phases α21 and α31.

In the symmetry approach to neutrino mixing typically the matrix Uν has an underlying sym-
metry form, for example, TBM, BM, GRA, GRB, HG. For all these five forms Uν = U◦ν P◦, θ ν

13 = 0
and needs to be corrected; if the measured θ23 is established to differ significantly from π/4,
|θ ν

23| = π/4 should be corrected. The sub-leading perturbative corrections, needed to bring the
“symmetry” values of the three neutrino mixing angles in U◦ν to the measured values of θ12, θ23

and θ13 in UPMNS can most naturally be provided by the unitary matrix Ue (see, e.g., [26]). In certain
classes of models, however, Ue coincides with the unit 3× 3 matrix and the requisite corrections
are incorporated in a factor contained in the matrix Uν (see, e.g., [22]).

As we have indicated, one of the main characteristics of the discussed approach to neutrino
mixing based on discrete flavour symmetries is that it leads to certain specific predictions for the
values of, and/or correlations between, the low-energy neutrino mixing parameters, which can be
tested experimentally. These predictions depend on the chosen G f , ρ(g f ), Ge and Gν . We give a
few examples [22, 23, 24, 25, 29, 30, 31, 32, 34, 43].
I. In a large class of models one gets sin2

θ23 = 0.5.
II. In different class of models one finds that the values of sin2

θ23 and sin2
θ13 are correlated:

sin2
θ23 = 0.5(1∓ sin2

θ13 +O(sin4
θ13)).

III. In certain models sin2
θ23 is predicted to have specific values which differ significantly from

9Given a discrete (finite) G f , there are more than one (but still a finite number of) possible residual symmetries Ge

and Gν , see, e.g., [21, 22].
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those in cases I and II [24]: sin2
θ23 = 0.455; or 0.463; or 0.537; or 0.545, the uncertainties in these

predictions being insignificant.
IV. Certain class of models predict a correlation between the values of sin2

θ12 and sin2
θ13: sin2

θ12 =
1/(3cos2 θ13) = (1+ sin2

θ13 +O(sin4
θ13))/3∼= 0.340, where we have used the b.f.v. of sin2

θ13.
V. In another class of models one still finds a correlation between the values of sin2

θ12 and
sin2

θ13, which, however, differs from that in Case IV: sin2
θ12 = (1− 3sin2

θ13)/(3cos2 θ13) =
(1−2sin2

θ13 +O(sin4
θ13))/3∼= 0.319, where we have used again the b.f.v. of sin2

θ13.
VI. In large classes of models in which the elements of the PMNS matrix are predicted to be func-
tions of just one real continuous free parameter (“one-parameter models”), the Dirac and the Ma-
jorana CPV phases have “trivial” CP conserving values 0 or π . In certain one-parameter schemes,
however, the Dirac phases δ = π/2 or 3π/2.
VII. In models in which the elements of the PMNS matrix are functions of two (angle, or one angle
and one phase) or three (two angle and one phase) parameters, the Dirac phase δ satisfies a sum
rule by which cosδ is expressed in terms of the three neutrino mixing angles θ12, θ23, θ13 and one
(or more) fixed (known) parameters θ ν which depend of the discrete symmetry G f employed and
on the residual symmetries Ge and Gν [23, 24, 25, 26]. In this cases the JCP factor which deter-
mines the magnitude of CP violation effects in neutrino oscillations, is also completely determined
by the values of the three neutrino mixing angles and the symmetry parameter(s) θν .

The predictions listed above, and therefore the respective models can be and will be tested in
the currently running (T2K, NOνA) and future planned (JUNO, T2HK, DUNE) experiments.

2.2 Predictions for the Dirac CPV Phase

We will consider next for concreteness the approach followed in [23, 33, 26, 24] in which the
requisite corrections to the underlying symmetry form of the neutrino mixing matrix are provided
by the matrix Ue corresponding to G f i) either broken to Ge = Z2, or ii) completely broken, by the
charged lepton mass term. In this case the PMNS matrix has the following general form [44]:

U = U†
e Uν = (Ũe)†

ΨU◦ν P◦ , (2.3)

Here Ũe is a 3×3 unitary matrix and Ψ is a diagonal phase matrix. The matrix Ũe was chosen in
[23, 33, 26] to have the following two forms:

A : Ũe = R−1
23 (θ e

23)R−1
12 (θ e

12) ; B : Ũe = R−1
12 (θ e

12) . (2.4)

where θ e
12 and θ e

23 are free real angle parameters. These two forms appear in a large class of
theoretical models of flavour and studies, in which the generation of charged lepton masses is an
integral part (see, e.g., [30, 45]). The phase matrix Ψ in cases A and B is given by [23, 26]:

A : Ψ = diag
(
1,e−iψ ,e−iω) ; B : Ψ = diag

(
1,e−iψ ,1

)
. (2.5)

The phases ω and/or ψ serve as a source for the Dirac CPV phase δ of the PMNS matrix and
contribute to the Majorana CPV phases of the PMNS matrix α21 and α31 [23]. The diagonal phase
matrix P◦ in eq. (2.3) contains two phases, ξ21 and ξ31, which also contribute to the Majorana
phases α21 and α31, respectively.

Consider first the case of the five underlying symmetry forms of U◦ν - TBM, BM, GRA, GRB
and HG - corrected by the matrix Ue, with the PMNS matrix given in eq. (2.3) and the matrices Ũe

9
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and Ψ as given in eqs. (2.4) and (2.5). In the considered setting the Dirac phase δ of the PMNS
matrix satisfies the following sum rule [23]:

cosδ =
tanθ23

sin2θ12 sinθ13

[
cos2θ

ν
12 +

(
sin2

θ12− cos2
θ

ν
12
) (

1− cot2 θ23 sin2
θ13
)]

. (2.6)

Within the approach employed this sum rule is exact and is valid for any value of the angle θ ν
23 [24]

(and not only for θ ν
23 = −π/4 of the five discussed symmetry forms of U◦ν ). As we see, via the

sum rule cosδ is expressed in terms of the three neutrino mixing angles θ12, θ23, θ13 and one fixed
(known) parameter θ ν which depends on the underlying symmetry form (TBM, BM, GRA, GRB,
HG) of the PMNS matrix. The difference between the cases A and B of forms of Ũe in eq. (2.4) is,
in particular, in the correlation between the values of sin2

θ23 and sin2
θ13 they lead to. In case A

of Ũe the values of sin2
θ23 and sin2

θ13 are not correlated and sin2
θ23 can differ significantly from

0.5 [23]. For the form B of Ũe we have [23]:

sin2
θ23 =

1
2

1−2 sin2
θ13

1− sin2
θ13

∼=
1
2

(1− sin2
θ13) . (2.7)

Thus, in contrast to the case A, in case B the value of sin2
θ23 is correlated with the value of sin2

θ13

and as a consequence sin2
θ23 can deviate from 0.5 insignificantly - only by 0.5sin2

θ13.
Given the values of sinθ23, sinθ23, sinθ13 and θ ν

12, cosδ is determined uniquely by the sum
rule (2.6). This allows us to determine also |sinδ | uniquely, but not sgn(sinδ ), which leads to a
two-fold ambiguity in the predicted value of δ .

The fact that the value of the Dirac CPV phase δ is determined (up to an ambiguity of the sign
of sinδ ) by the values of the three mixing angles θ12, θ23 and θ13 of the PMNS matrix and the value
of θ ν

12 of the matrix U◦ν , eq. (2.1), is the most striking prediction of the models considered. This
result implies that in the schemes under discussion, the rephasing invariant JCP associated with the
Dirac phase δ , eq. (1.5), is also a function of the three angles θ12, θ23 and θ13 of the PMNS matrix
and of θ ν

12:

JCP = JCP(θ12,θ23,θ13,δ (θ12,θ23,θ13,θ
ν
12)) = JCP(θ12,θ23,θ13,θ

ν
12) . (2.8)

This allows to obtain predictions for the possible values of JCP for the different symmetry forms of
U◦ν (specified by the value of θ ν

12) using the current data on θ12, θ23 and θ13.
In [23], by using the sum rule in eq. (2.6), predictions for cosδ , δ and the JCP factor were

obtained in the TBM, BM, GRA, GRB and HG cases for the b.f.v. of sin2
θ12, sin2

θ23 and sin2
θ13.

It was found that the predictions of cosδ vary significantly with the symmetry form of U◦ν . For
the b.f.v. of sin2

θ12 = 0.308, sin2
θ13 = 0.0234 and sin2

θ23 = 0.437 found for NO spectrum in
[12], for instance, one gets [23] cosδ = (−0.0906), (−1.16), 0.275, (−0.169) and 0.445, for the
TBM, BM (LC), GRA, GRB and HG forms, respectively. For the TBM, GRA, GRB and HG forms
these values correspond to δ = ±95.2◦,±74.0◦,±99.7◦,±63.6◦. For the b.f.v. given in Table 1
and obtained in the recent global analysis [2] one finds in the cases of the TBM, BM (LC), GRA,
GRB and HG forms the values given in Table 3. Due to the different NO and IO b.f.v. of sin2

θ23,
the predicted values of cosδ and δ for IO spectrum differ (in certain cases significantly) from those
for the NO spectrum.

10
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Table 3: Predicted values of cosδ and δ for the five symmetry forms, TBM, BM, GRA, GRB and HG, and
Ũe given by the form A in eq. (2.4), obtained using eq. (2.6) and the best fit values of sin2

θ12, sin2
θ23 and

sin2
θ13 for NO and IO neutrino mass spectra from ref. [2].

Scheme cosδ (NO) δ (NO) cosδ (IO) δ (IO)
TBM −0.16 ±99◦ −0.27 ±106◦

BM (LC) −1.26 δ−unphysical −1.78 δ−unphysical
GRA 0.21 ±78◦ 0.24 ±76◦

GRB −0.24 ±105◦ −0.38 ±112◦

HG 0.39 ±67◦ 0.48 ±62◦

Two comments are in order. First, according to the results found in [2] and quoted in Table 1,
the predicted values of δ lying in the first quadrant are strongly disfavored (if not ruled out) by the
current data. Second, the unphysical value of cosδ in the BM (LC) case is a reflection of the fact
that the scheme under discussion with BM (LC) form of the matrix U◦ν does not provide a good
description of the current data on θ12, θ23 and θ13 [26]. Physical values of cosδ can be obtained in
the case of the NO spectrum, e.g., for the b.f.v. of sin2

θ13 if the value of sin2
θ12 (sin2

θ23) is larger
(smaller) than the current best fit value 10 [23, 33]. However, with the current b.f.v. of sin2

θ23 in
the case of IO spectrum, the BM (LC) form is strongly disfavored.

The results quoted above imply [23] that a measurement of cosδ can allow to distinguish
between at least some of the different symmetry forms of U◦ν , provided θ12, θ13 and θ23 are known,
and cosδ is measured, with sufficiently high precision 11. Even determining the sign of cosδ will
be sufficient to eliminate some of the possible symmetry forms of U◦ν .

These conclusions were confirmed by the statistical analyses performed in ref. [33] where
predictions of the sum rule (2.6) for i) δ , cosδ and the rephasing invariant JCP using the “data”
(best fit values and χ2−distributions) on sin2

θ12, sin2
θ13, sin2

θ23 and δ from [12], and ii) for
cosδ , using prospective uncertainties on sin2

θ12, sin2
θ13 and sin2

θ23, were derived for the TBM,
BM (LC), GRA, GRB and HG symmetry forms of the matrix U◦ν . Both analyses were performed
for the case of NO neutrino mass spectrum. The results for the IO spectrum are similar. The aim
of the first analysis, the results of which for JCP are shown in Fig. 1, was to derive the allowed
ranges for δ and JCP, predicted on the basis of the current data on the neutrino mixing parameters
for each of the symmetry forms of U◦ν considered (see [33] for details of the analysis). We have
found [33], in particular, that the CP-conserving value of JCP = 0 is excluded in the cases of the
TBM, GRA, GRB and HG neutrino mixing symmetry forms, respectively, at approximately 5σ ,
4σ , 4σ and 3σ C.L. with respect to the C.L. of the corresponding best fit values which all lie in
the interval JCP = (−0.034)− (−0.031). The best fit value for the BM (LC) form is much smaller
and close to zero: JCP = (−5× 10−3). For the TBM, GRA, GRB and HG forms at 3σ we have
0.020≤ |JCP| ≤ 0.039. Thus, for these four forms the CP violating effects in neutrino oscillations
are predicted to be relatively large and observable in the T2HK and DUNE experiments [4, 5], and

10For, e.g., sin2
θ12 = 0.34 allowed at 2σ by the current data, we have cosδ =−0.943. Similarly, for sin2

θ12 = 0.32,
sin2

θ23 = 0.41 and sinθ13 = 0.158 we have [23]: cosδ =−0.978.
11Detailed results on the dependence of the predictions for cosδ on sin2

θ12, sin2
θ23 and sin2

θ13 when the latter are
varied in their respective 3σ experimentally allowed ranges can be found in [33].
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Figure 1: Nσ ≡
√

χ2 as a function of JCP. The dashed lines represent the results of the global fit [12],
while the solid lines represent the results we obtain for the TBM, BM (LC), GRA (upper left, central, right
panels), GRB and HG (lower left and right panels) neutrino mixing symmetry forms. The blue (red) lines
are for NO (IO) neutrino mass spectrum. (From ref. [33].)

perhaps even in T2K experiment [46]. These conclusions hold if one used in the analysis the results
on the neutrino mixing parameters and δ , obtained in the most recent global analysis [2].

In Fig. 2 (left panel) we present the results of the statistical analysis of the predictions for
cosδ , namely the likelihood function versus cosδ within the Gaussian approximation (see [33] for
details) performed using the current b.f.v. of the mixing angles for NO neutrino mass spectrum
given in ref. [12] and the prospective rather small 1σ uncertainties i) of 0.7% on sin2

θ12, planned
to be reached in JUNO experiment [47], ii) of 3% on sin2

θ13, foreseen to be obtained in the Daya
Bay experiment [48], and iii) of 5% on sin2

θ23, expected to be reached in the currently running
and future planned long baseline neutrino oscillation experiments. In the proposed upgrading of
the currently taking data T2K experiment [46], for example, θ23 is estimated to be determined with
a 1σ error of 1.7◦, 0.5◦ and 0.7◦ if the best fit value of sin2

θ23 = 0.50, 0.43 and 0.60, respectively.
This implies that for these three values of sin2

θ23 the absolute (relative) 1σ error would be 0.0297
(5.94%), 0.0086 (2%) and 0.0120 (2%). This error on sin2

θ23 is expected to be further reduced in
the future planned T2HK [5] and DUNE [4] experiments.
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Figure 2: The likelihood function versus cosδ for NO neutrino mass spectrum after marginalising over
sin2

θ13 and sin2
θ23, for the TBM, BM (LC), GRA, GRB and HG symmetry forms of the mixing matrix U◦ν .

The figure is obtained by using the prospective 1σ uncertainties in the determination of sin2
θ12, sin2

θ13 and
sin2

θ23 within the Gaussian approximation. In the left (right) panel sin2
θ12 is set to its b.f.v. of [12] 0.308

(is set to 0.332), the NO best fit values of the other angles are taken from [12]. (From ref. [33].)

As we have already remarked, the BM (LC) case is very sensitive to the b.f.v. of sin2
θ12 and

sin2
θ23 and is disfavored at more than 2σ for the b.f.v. found in [12] for the NO spectrum. This

case might turn out to be compatible with the data for larger (smaller) measured values of sin2
θ12

(sin2
θ23). This is illustrated in Fig. 2 (right panel).
The measurement of sin2

θ12, sin2
θ13 and sin2

θ23 with the quoted precision will open up
the possibility to distinguish between the BM (LC), TBM/GRB, GRA and HG forms of U◦ν .
Distinguishing between the TBM and GRB forms seems to require unrealistically high preci-
sion measurement of cosδ 12. Assuming that |cosδ | < 0.93, which means for 76% of val-
ues of δ , the error on δ , ∆δ , for an error on cosδ , ∆(cosδ ) = 0.10(0.08), does not exceed
∆δ . ∆(cosδ )/

√
1−0.932 = 16◦ (12◦). This accuracy is planned to be reached in the future neu-

trino experiments like T2HK (ESSνSB) [5, 49]. Therefore a measurement of cosδ in the quoted
range will allow one to distinguish between the TBM/GRB, BM (LC) and GRA/HG forms at ap-
proximately 3σ C.L. if the precision achieved on sin2

θ12, sin2
θ13 and sin2

θ23 is the same as in
Figs. 2. We are performing a more detailed study of the possibility to distinguish between BM
(LC), TBM/GRB, GRA and HG forms of U◦ν using the prospective data from DUNE and T2HK
experiments [50].

In [24] we extended the analyses performed in [23, 33] by obtaining sum rules for cosδ for
UPMNS having the general form given in eq. (2.3) and the following forms of Ũe and U◦ν

13:

C. U◦ν = R23(θ ν
23)R12(θ ν

12) with θ ν
23 = −π/4 and θ ν

12 as dictated by TBM, BM, GRA, GRB or
HG mixing, and i) Ũe = R−1

13 (θ e
13) (Ψ = diag(1,1,e−iω)), ii) Ũe = R−1

23 (θ e
23)R

−1
13 (θ e

13) (Ψ =

12Self-consistent models or theories of (lepton) flavour which lead to the GRB form of U◦ν might still be possible to
distinguish from those leading to the TBM form using the specific predictions of the two types of models for the neutrino
mixing angles. The same observation applies to models which lead to the GRA and HG forms of U◦ν .

13We performed in [24] a systematic analysis of the forms of Ũe and U◦ν , for which sum rules for cosδ of the type of
eq. (2.6) could be derived, but did not exist in the literature.
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diag(1,e−iψ ,e−iω)), and iii) Ũe = R−1
13 (θ e

13)R
−1
12 (θ e

12) (Ψ = diag(1,e−iψ ,e−iω));

D. U◦ν = R23(θ ν
23)R13(θ ν

13)R12(θ ν
12) with θ ν

23, θ ν
13 and θ ν

12 fixed by arguments associated with
symmetries, and iv) Ũe = R−1

12 (θ e
12) (Ψ = diag(1,e−iψ ,1)), and v) Ũe = R−1

13 (θ e
13) (Ψ =

diag(1,1,e−iω)).
The sum rules for cosδ were derived first for θ ν

23 = −π/4 for the cases listed in point C,
and for the specific values of (some of) the angles in U◦ν , characterising the cases listed in point
D, as well as for arbitrary fixed values of all angles contained in U◦ν . In certain models with
sin2

θ ν
13 6= 0, sin2

θ23 is predicted to have specific values which differ significantly from those in
case B [24]: sin2

θ23 = 0.455; or 0.463; or 0.537; or 0.545, the uncertainties in these predictions
being insignificant. Predictions for correlations between neutrino mixing angle values and/or sum
rules for cosδ , which can be tested experimentally, were further derived in [25] for a large number
of models based on G f = S4, A4, T ′ and A5 and: i) Ge = Z2 and Gν = Zn, n > 2 or Zn×Zm, n,m≥ 2;
ii) Ge = Zn, n > 2 or Ge = Zn×Zm, n,m≥ 2 and Gν = Z2;
iii) Ge = Z2 and Gν = Z2;
iv) Ge is fully broken and Gν = Zn, n > 2 or Zn×Zm, n,m≥ 2;
v) Ge = Zn, n > 2 or Zn×Zm, n,m≥ 2 and Gν is fully broken.

3. Outlook
The results obtained in refs. [23, 33, 24, 25, 30, 32, 11] and, e.g., in [29, 31, 34, 43] and in

many other studies (quoted in the cited articles) show that a suffciently precise measurement of the
Dirac phase δ of the PMNS neutrino mixing matrix in the current and future neutrino oscillation
experiments, combined with planned improvements of the precision on the neutrino mixing angles,
can provide unique information about the possible discrete symmetry origin of the observed pattern
of neutrino mixing and, correspondingly, about the existence of new fundamental symmetry in the
lepton sector. Thus, these experiments will not simply provide a high precision data on the neutrino
mixing and Dirac CPV parameters, but will probe at fundamental level the origin of the observed
form of neutrino mixing. These future data will show, in particular, whether Nature followed the
the discrete symmetry approach for fixing the values of the three neutrino mixing angles and of the
Dirac (and Majorana) CP violation phases of the PMNS neutrino mixing matrix. We are looking
forward to these data and to the future exciting developments in neutrino physics.
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