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We present a formalism to resum large threshold logarithms to all orders in perturbative QCD
for the rapidity distribution of any colorless particle at the hadron colliders. Using the derived
resummed coefficients in two dimensional Mellin space, we present the rapidity distributions for
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1. Introduction

Resummation of large logarithms for the rapidity distribution has been an interesting topic over
the years and several results are already available to a very good accuracy for different processes.
The fixed order (FO) predictions are often not reliable in certain regions of phase space where
large logarithms of some kinematic variables appear. For example, at the partonic threshold, where
the initial partons have just enough energy to produce the final state such as a Higgs boson or
Z/W± boson or a pair of leptons in addition to soft gluons, the phase-space available for the gluons
becomes severely constrained which results in large logarithms. In a truncated FO calculation,
these large logarithms give unreliable results and need to be systematically resummed to all orders
in perturbation theory for reliable predictions.

When talking about resummation of rapidity, two distinct approaches can be observed in QCD.
One we call Catani & Trentadue approach (or Mellin-Mellin (M-M) approach) [1] which was pro-
posed for the xF distribution but can easily be extended to the rapidity distribution. In this ap-
proach the threshold limit is taken using both partonic scaling variables z1,z2 simultaneously going
to the threshold limit 1. This basically resums all the delta (δ (1− zi)) terms and the distributions
(
[ lnn(1−zi)

1−zi

]
+

) arising in z1 and z2. Using this approach lepton pair resummation has been performed
at NLL accuracy [2]. The other approach, we call Laenen & Sterman approach (or Mellin-Fourier
(M-F) approach) [3]. Here the partonic cross-section is written in terms of the scaling variable z and
partonic rapidity yp and finally the threshold limit is taken only for z→ 1 which resums the delta
(δ (1− z)) terms and the distributions (

[ lnn(1−z)
1−z

]
+

) in z. However, for partonic yp only the delta
(δ (yp)) piece is taken. Using this approach, resummation has been performed for W± production
[4] as well as Drell-Yan (DY) rapidity upto NNLL accuracy [5, 6].

We follow the M-M approach and derive an all order resummed result in two dimensional
Mellin space for the rapidity distribution of any colourless state F that can be produced in hadron
colliders. We present our results in terms of the Mellin variables N1 and N2 corresponding to z1

and z2 respectively. In Mellin space, the limits zi→ 1 translate into Ni→ ∞ and large logarithms
proportional to ln(Ni) are resummed to all orders in perturbation theory. We present numerical
results for resummed rapidity distributions for Higgs [7] and DY [8] productions at the LHC.

2. Theoretical Framework

The rapidity distribution of a colorless state F at the hadron colliders can be written as

dσ I

dy
= σ

I
B(x

0
1,x

0
2,q

2) ∑
ab=q,q,g

∫ 1

x0
1

dz1

z1

∫ 1

x0
2

dz2

z2
×H I

ab

(
x0

1
z1
,
x0

2
z2

)
∆

I
d,ab(z1,z2,q2). (2.1)

For brevity, the renormalization scale (µR) and the factorisation scale (µF ) dependences are kept
implicit in the above equation. Here the hadron level rapidity is y = 1

2 ln(p2.q/p1.q) = 1
2 ln
(
x0

1/x0
2

)
;

τ = q2/S = x0
1x0

2, q being the momentum of the final state F , S = (p1 + p2)
2, where pi are the

momenta of incoming hadrons Pi (i = 1,2). For the DY process, the state F is a pair of leptons with
invariant mass q2 (I = q) and σ I = dσq(τ,q2,y)/dq2 whereas for the Higgs boson production
through gluon (bottom anti-bottom) fusion, I = g(b) and σ I = σg(b)(τ,q2,y). The luminosity
H I

ab in Eq. (2.1) is given by the product of parton distribution functions (PDFs) f P1
a (x1,µ

2
F) and

1
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f P2
b (x2,µ

2
F), renormalized at µF . The partonic coefficient functions denoted by ∆I

d,ab depend on the
parton level scaling variables zi,(i = 1,2). Using factorization properties of the cross sections and
renormalization group invariance, the threshold enhanced contribution to the ∆I

d,ab denoted by ∆SV
d,I

was shown to exponentiate [9] as

∆
SV
d,I = C exp

(
Ψ

I
d(q

2,µ2
R,µ

2
F ,z1,z2,ε)

)∣∣∣
ε=0

, (2.2)

where the exponent ΨI
d is both ultraviolet and infrared finite to all orders in perturbation theory. It

contains finite distributions computed in 4+ ε space-time dimensions, expressed in terms of two
shifted scaling variables z1 = 1− z1 and z2 = 1− z2 and takes the following form:

Ψ
I
d =

(
ln
(

ZI(âs,µ
2
R,µ

2,ε)
)2

+ ln
∣∣F̂ I(âs,Q2,µ2,ε)

∣∣2)δ (z1)δ (z2)

−C
(

lnΓII(âs,µ
2,µ2

F ,z1,ε) δ (z2)+(z1↔ z2)
)
+2 Φ

I
d(âs,q2,µ2,z1,z2,ε). (2.3)

We have defined, Q2 = −q2 and the scale µ is introduced to define the dimensionless strong
coupling constant âs = ĝ2

s/16π2 in dimensional regularization, which is related to renormalised
as through the renormalization constant Z(as(µ

2
R)) i.e., âs = (µ/µR)

εZ(µ2
R)S
−1
ε as(µ

2
R) with Sε =

exp[(γE − ln4π)ε/2], γE = 0.57721566 · ·· the Euler-Mascheroni constant. The definition of the
double Mellin convolution C is given in [9] and it is understood that the regular functions resulting
from various convolutions are dropped. The overall operator renormalization constant ZI renor-
malizes the bare form factor F̂ I; the corresponding anomalous dimension is denoted by γI . The
diagonal mass factorization kernels ΓII remove the initial state collinear singularities. We have
factored out the form factor and the mass factorization kernels in ∆I

d,ab in such a way that the re-
maining soft distribution function Φ I

d contains only soft gluon contributions. Both the form factor
F̂ I and the soft distribution function ΦI

d satisfy Sudakov type differential equations (see [10, 11])
which are straightforward to solve in powers of strong coupling constant and they can be found in
[9, 10, 11, 12]. In terms of these solutions we arrive at the following expression (setting µ2

R = µ2
F ):

Ψ
I
d = δ (z2)

(
1
z1

{∫ q2 z1

µ2
F

dλ 2

λ 2 AI
(
as(λ

2)
)
+DI

d
(
as(q2 z1)

)})
+

+
1
2

(
1

z1z2

{
AI(as(z12))

+
dDI

d(as(z12))

d lnz12

})
+

+
1
2

δ (z1)δ (z2) ln
(

gI
d,0(as(µ

2
F))
)
+(z1↔ z2). (2.4)

Here z12 = q2z1z2 and AI are the cusp anomalous dimensions which are known upto four loops
[13]. The finite function DI

d can be expanded order by order in strong coupling and can be found
from the inclusive counterpart with the use of the following identity [9, 14]:∫ 1

0
dx0

1

∫ 1

0
dx0

2
(
x0

1x0
2
)N−1 dσ I

dy
=
∫ 1

0
dτ τ

N−1
σ

I , (2.5)

where σ I is the inclusive cross section. Comparing against DI from the inclusive cross section, we
obtain

DI
d,1 = DI

1 ; DI
d,2 = DI

2−ζ2β0AI
1 ; DI

d,3 = DI
3 +ζ2(−β1AI

1−2β0AI
2−2β

2
0 f I

1)−4ζ3β
2
0 AI

1 ;

DI
d,4 = DI

4 +ζ2(−2β1AI
2−β2AI

1−β0(3AI
3 +5β1 f I

1)−6β
2
0 f I

2−12β
3
0 G

I,1
1 )− 57

5
ζ

2
2 β

3
0 AI

1

−β0ζ3(12β0AI
2 +10β1AI

1 +12β
2
0 f I

1) . (2.6)
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After taking double Mellin moments [15] of Eq. (2.2), we arrive at the N1-N2 space cross-section:

∆̃
(res)
d,I (N1,N2)≡ ∆̃

SV
d,I(ω) =

∫ 1

0
dx0

1
(
x0

1
)N1−1

∫ 1

0
dx0

2
(
x0

2
)N2−1

∆
SV
d,I ≡ gI

d,0(as)exp
(
gI

d(as,ω)
)
,(2.7)

where ω = asβ0 ln(N1N2) (with Ni = eγE Ni, i = 1,2). Eq. (2.7) is organised in such a way that
gI

d(as,ω) contains only N1,N2 dependent terms whereas gI
d,0(as) are N1,N2 independent. The Ni

independent coefficients gI
d,0(as) can be expanded in powers of as as ln(gI

d,0) = ∑
∞
i=0 ai

sl
I,(i)
g0 . The

exponent gI
d(as,ω) takes the canonical form:

gI
d(as,ω) = gI

d,1(ω) ln(N1N2)+
∞

∑
i=0

ai
sg

I
d,i+2(ω) . (2.8)

To perform resummation at NNLO+NNLL accuracy, we need resummed coefficients upto gI
d,3 and

the prefactors upto lI,(2)
g0 and those can be found in [7]1. Exponentiation of the coefficients gI

d,i
resums the terms asβ0 ln(N1N2) systematically to all orders in perturbation theory. The resummed
result has to be properly matched with the fixed order result to avoid double counting of the loga-
rithms. The matched cross-section takes the following form:

dσ I,(res)

dy
=

dσ I,(FO)

dy
+σ

I
B

∫ c1+i∞

c1−i∞

dN1

2πi

∫ c2+i∞

c2−i∞

dN2

2πi
ey(N2−N1)

(√
τ
)cI−N1−N2 f̃I(N1) f̃I(N2)

×
[

∆̃
(res)
d,I (N1,N2)− ∆̃

(res)
d,I (N1,N2)

∣∣∣
tr

]
. (2.9)

Here cI =−4 for I = g and 2 for I = q. The subscript tr refers to the result obtained from Eq. (2.7)
by truncating at a desired accuracy in as. Note that the coefficients gI

d,0 and gI
d,i are functions of

cusp (AI
i ), collinear (BI

i ), soft ( f I
i ), UV (γg

i ) anomalous dimensions, universal soft terms GI,i
d, j and

process dependent constants GI,i
j of virtual corrections. These constants are known to sufficient or-

der to perform resummation to NNLL accuracy. The Ni dependent terms inside the square bracket
appropriately multiplied with Ni dependent PDFs, namely f̃I(Ni), have to undergo two Mellin in-
versions to obtain the final result in terms of τ and y. We have used minimal prescription advocated
in [16] to perform the Mellin inversion to finally get resummed rapidity distribution.

3. Results

3.1 Higgs rapidity distribution

To perform the numerical analysis for the Higgs rapidity distribution, we have adopted the
following choices of parameters:

√
S = 13 TeV, MH = 125 GeV, n f = 5, Mt = 173 GeV and

used the MMHT2014 [17] PDF set with the corresponding value of strong coupling constant at
each order in perturbation theory. The FO results up to NNLO are obtained using the publicly
available code FEHIP [18] whereas the resummed contributions are included up to NNLL using an
in-house Fortran code. To assess the scale uncertainty resulting from unphysical renormalisation
and factorisation scales, we vary them between [MH/2,2MH ] around the central scale µR = µF =

1The gI
d,4 and lI,(3) coefficients can also be found in the first arXiv version of [7].
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Figure 1: Higgs rapidity distributions for fixed order (left panel) upto NNLO and resummed (right
panel) contributions upto NNLO+NNLL are presented with scale variation around central scale
choice MH . The respective K-factors are shown at the bottom panel.

MH with the constraint 1/2≤ µR/µF ≤ 2. In Fig. (1), we have plotted the production cross section
for the Higgs boson as a function of its rapidity y up to NNLO in the left panel and to NNLO+NNLL
in the right panel along with respective K-factors. We observe that the extent of overlap between
consecutive orders in the resummed case is better compared to the fixed order indicating the fact
that inclusion of the higher order corrections has improved the convergence of the perturbation
series (see Fig. (1)). In particular, NNLO+NNLL increases approximately by 13% with respect to
NLO+NLL whereas the corresponding number for NNLO over NLO is approximately 25%. We
also found that the choice of different central scales has minimum effect on the resummed result at
NNLO+NNLL level (see Fig. (2a)). The scale uncertainties coming from the variation of µF and
µR are also reduced by the inclusion of resummed contributions (Fig. (2b)).
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Figure 2: (a) Higgs rapidity distributions for fixed order and resummed contributions are presented
with scale variation around central scale choices MH/2 and MH at NNLO+NNLL. (b) µF , µR scale
variations for different benchmark y values (starting from the top y = 0,0.8,1.6,2.4).

4



P
o
S
(
L
L
2
0
1
8
)
0
4
3

Threshold Resummation Goutam Das

( µR
MZ

, µF
MZ

) LO LLM-F LLM-M NLO NLLM-F NLLM-M NNLO NNLLM-F NNLLM-M

(2, 2) 72.626 +0.988 +3.219 73.450 +1.639 +1.796 70.894 +0.630 +0.646
(2, 1) 63.197 +0.768 +2.595 70.625 +0.761 +1.017 70.360 +0.292 +0.317
(1, 2) 72.626 +1.095 +3.577 73.535 +1.912 +1.760 70.509 +0.510 +0.395
(1, 1) 63.197 +0.851 +2.887 71.395 +0.858 +0.901 70.537 +0.248 +0.167
(1, 0.5) 53.241 +0.621 +2.216 67.581 +0.156 +0.140 69.834 - 0.001 - 0.094
(0.5, 1) 63.197 +0.953 +3.278 72.355 +0.945 +0.681 70.266 +0.091 - 0.015
(0.5, 0.5) 53.241 +0.695 +2.504 69.259 +0.102 - 0.154 70.283 - 0.039 - 0.146

Table 1: Comparison of resummed results between the M-F and the M-M approaches in the mini-
mal prescription scheme at y = 0 for various choices of scales.

3.2 Drell-Yan rapidity distribution
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Figure 3: (a) DY cross sections against µF (left), µR(middle) and µ(right) variations at
NNLO+NNLL for 14 TeV LHC. (b) The rapidity distribution for 14 TeV LHC at q = MZ with
bottom panels representing the K-factors.

For the DY rapidity distribution we choose to work at 14 TeV LHC and focus mainly on the
Z-peak region. The NNLO contributions are obtained from Vrap-0.9 [20]. We have performed a
detailed analysis on the choice of the central scale and have found out the best prediction for the
FO case is (µr,µ f ) = (1,1)MZ whereas in the resummed case it is (µr,µ f ) = (1/2,1)MZ (see Fig.
(3a)). In the DY case, we see a better perturbative convergence for the resummed case as compared
to the FO. The scale uncertainty, however, is more in the resummed case compared to the FO (Fig.
(3b)). The reduced scale uncertainty at the FO is due to the large cancellation of the contributions
from different partonic channels which could be accidental and might not hold at higher orders.
Resummation only takes care of the large logarithms coming from the distribution in the qq̄ chan-
nel; therefore considering only the qq̄ channel, we get less scale uncertainty compared to the FO
as expected. We have also estimated PDF uncertainties using different groups of PDFs besides

5
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Figure 4: (a) DY rapidity distributions at NNLO+NNLL for 8 TeV LHC in the invariant mass
range 60 < q < 120 GeV. (b) Comparison between the resummed results and the CDF data [19] at√

s = 1.8 TeV in the invariant mass range 66 < q < 116 GeV for two different PDF sets.

the MMHT set and we found that PDF uncertainties are consistent among different PDF groups
and remain within 2% at NNLO+NNLL. We have also made a numerical comparison between the
M-F and the M-M approaches keeping parameters same for both cases as in [6]. We have found
a significant difference at LO+LL level; though at higher orders the differences are negligible at
the level of cross-section. The M-M approach however provides a better perturbative convergence
( see Table-1). Finally we stress that at this accuracy the electro-weak (EW) corrections are impor-
tant. Using the publicly available code Horace [21] we have included the EW corrections at NLO
accuracy with q-integrated NNLO+NNLL QCD results at 8 TeV LHC (Fig. (4a)). Moreover, we
compare our prediction with the CDF data [19] for

√
S = 1.8 TeV integrated over q in the range

66 < q < 116 GeV and find a very good agreement (Fig. (4b)).

4. Conclusion

We have developed a formalism to resum the threshold logarithms in double Mellin space
for the rapidity distribution of a colorless final state F produced at hadron colliders. An analytic
expression of the resummed coefficients up to N3LL has been presented in terms of the double
Mellin variables N1 and N2. As an application we have studied the role of the resummed thresh-
old logarithms in the rapidity distribution for Higgs and the DY production at the LHC. We have
performed a detailed study on the scale variations and central scale choice as well as estimated
uncertainty coming from PDFs. The numerical impact of our resummation in double Mellin space
has significant differences at the leading logarithmic accuracy compared to the existing results in
the literature; however, we found agreement at NNLO+NNLL level. Our resummed coefficients
can be used for the rapidity distribution of any colorless final state produced at the LHC. The nu-
merical analysis presented here would be useful to understand the properties of the Higgs boson as
well as it will be very useful for precise determination of PDFs at the LHC.
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