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We present a new paradigm for the simulation of arrays of Imaging Atmospheric Cherenkov Tele-
scopes (IACTs) which overcomes limitations of current approaches. Up to now, all major IACT
experiments rely on the same Monte-Carlo simulation strategy, using predefined observation and
instrument settings. Simulations with varying parameters are generated to provide better esti-
mates of the Instrument Response Functions (IRFs) of different observations. However, a large
fraction of the simulation configuration remains preserved, leading to complete negligence of all
related influences. Additionally, the simulation scheme relies on interpolations between different
array configurations, which are never fully reproducing the actual configuration for a given obser-
vation. Interpolations are usually performed on zenith angles, off-axis angles, array multiplicity,
and the optical response of the instrument. With the advent of hybrid systems consisting of a
large number of IACTs with different sizes, types, and camera configurations, the complexity of
the interpolation and the size of the phase space becomes increasingly prohibitive. Going beyond
the existing approaches, we introduce a new simulation and analysis concept which takes into
account the actual observation conditions as well as individual telescope configurations of each
observation run of a given data set. These run-wise simulations (RWS) thus exhibit considerably
reduced systematic uncertainties compared to the existing approach, and are also more computa-
tionally efficient and simple. The RWS framework has been implemented in the H.E.S.S. software
and tested, and is already being exploited in science analysis.
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1. Introduction

In the past years, the field of ground-based gamma-ray astronomy using Imaging Atmospheric
Cherenkov Telescopes (IACTs) has undergone several improvements. Instrument upgrades both
enlarge the accessible energy range and improve the overall data quality ([1], [2], [3]). As for
the data analysis, advanced photon reconstruction and analysis techniques led to improved event
classification and reconstruction precision ([4], [5], [6], [7]).

Opposed to these advancements, the overall Monte-Carlo (MC) simulation and analysis strat-
egy has up to now remained unchanged. The principle of this approach is identical for all major
IACT experiments (see, e.g., [8], [9]). In general, MC simulations are carried out for predefined
and fixed observation and instrument parameters. For those parameters which are assumed to have
a major influence on the observation, simulations with varying parameter values are generated to
provide better estimates of the Instrument Response Functions (IRFs). The remaining part of the
simulated configuration is left unchanged. To obtain the response for a given observation, the IRFs
for the different configurations are interpolated. The interpolation helps to achieve a better esti-
mate, but is in most cases just a simplification and thus inevitably introduces systematic errors.
Additionally, upgraded and future IACT arrays become increasingly complex because of different
IACT sizes, types, and camera configurations. Thus the largely increased phase space makes it
more and more difficult to run the simulations computationally efficient whilst keeping up with the
nominal performance gain.

Here we introduce a new MC simulation and analysis concept as an alternative to the existing
approaches. It takes into account the actual observation conditions as well as individual telescope
configurations of each observation of a given data set.

2. Principles and Technical Implementation

The main motivation for the new approach was to allow simulations that are as close as possible
at the observational reality. Most observation conditions can in general be assumed to be constant
for the time scales of a unit of continuous data taking. As for H.E.S.S., such an observation unit
lasts up to 28min and is called observation run, or just run [8]. For the method presented here,
dedicated simulation sets are generated on a run-by-run basis, therefore it is henceforth called the
Run-Wise-Simulation (RWS) concept.

2.1 Technical Framework

The RWS approach has been fully implemented in one of the two analysis chains in operation
in H.E.S.S., named parisanalysis. All information that is relevant for the simulation of a specific
run is stored in a MySQL database (DB) and read out on demand. Hence no read-in of run-specific
files is necessary. The shower simulations are carried out with the KASCADE software [10], which
has been improved and rewritten in C++ to allow more flexible usage and easy integration in the
simulation chain (see [4]). It has been further enhanced for the present work to be able to simulate
the evolution of the tracking position of the telescopes within a run. The KASCADE output is
directly passed to the internal IACT simulation software. Opposed to the classical simulation
approach, where generally the shower and IACT simulation are decoupled, no direct output of
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the shower simulation is saved in case of the implemented RWS approach, leading to a drastic
reduction of needed disk space at the expense of increased computation time. To allow simulating
larger statistics, simulations can be split into several slices for each run. The simulated raw-data
files contain all information that is needed for the event reconstruction and higher-level analysis
frameworks. A MySQL DB table is used to keep track of the simulation production, including
details of the actual simulation parameters of each run.

2.2 Simulation Parameter Settings

Observations of IACT arrays generally cover a large range of observation conditions, implying
substantial variations of the required simulation parameter space. For an efficient simulation with
yet sufficient parameter coverage for each run, an automatized parameter calculation approach is
indispensable. The relevant inputs for the calculation presented here are:

• Array configuration,

• Zenith angle range [θmin,θmax] covered within the run,

• Relative optical efficiencies ε of the participating IACTs,

• Desired statistics level, defined by the differential flux at E = 1TeV,

• Spectral index Γ of the simulation,

• Number of computing jobs (slices) per run.

The first three are run-dependent and automatically read out from the database, whereas the three
latter are set by the user.

MC simulations were carried out to determine up to which impact distances (with respect to
the center of the array) and down to which primary photon energies electromagnetic showers can
trigger the H.E.S.S. telescopes. Based on these, the maximum simulated impact distance is set to

Rsim (θmax) = R0 ·
1

cosθmax
, (2.1)

where R0 = 480m. Both the value and the functional relation are notably independent of other
observation parameters, which was verified with the underlying simulations. A potential future
improvement would be to make it dependent on the energy, since for photons with lower energy
less simulation area is needed. The minimum simulated primary photon energy of a run is

Emin =
E0

εmax
· 1

cos3 θmin
, (2.2)

with E0 = 5GeV for runs where the large H.E.S.S. telescope CT5 ([11]) took part in the observation
and E0 = 30GeV for all other runs. εmax corresponds to the maximum of the relative optical
efficiencies of the observing IACTs, or directly to the one of CT5 if participating. Eq. 2.2 takes
into account both the fact that at larger zenith angles the photon density on ground is lower due
to the enlarged Cherenkov cone (see Eq. 2.1) as well as the increased attenuation due to the larger
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optical depth. The maximum energy Emax of the simulated primary photons is fixed to 100TeV for
all observations.

As stated above, the user sets the spectral index of the simulation and the differential flux at
E = 1TeV. The latter is set in units of the Crab, where the reference spectrum of the Crab Nebula
is taken from [12]. Together with Eq. 2.1, 2.2, and Emax, the simulation phase space for a given
run is set, allowing to derive the number of simulated events. The event statistics per energy for
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Figure 1: Number of simulated events for a run with θ = 30◦, εmax = 70%, a differential spectral index
Γ = 2.2, and a differential flux of 10Crab at E = 1TeV. The values of Emin are illustrated with dashed red
and blue lines for a run with and without CT5, respectively.

the simulation of a given run are illustrated in Fig. 1. The parameters are θ = 30◦, εmax = 70%,
Γ = 2.2, and a differential flux of 10Crab at E = 1TeV. The total number of simulated events is
NCT1−4 ≈ 1.2×105 and NCT5 ≈ 1.1×106.

2.3 Observation-Based Simulation Configuration

The RWS framework exploits a large variety of information of each observation run to en-
hance the description of the simulation, as is going to be laid out in the following. As previously
mentioned in Section 2.1, this information is stored in the DB and read out for the simulation.

An overview of the run information that is used for the simulation is given in Table 1. The
correct use of all input parameters has been thoroughly and successfully checked. It is clear that
the quality of the RWS strongly depends on a working calibration framework, which serves as the
source of most of the parameters.

As an example, the overall agreement of the measured and simulated pedestal shape of a given
pixel for a specific run is shown in the left panel of Figure 2. This agreement is the result of a fully
working calibration and simulation chain: For each pixel, the rate of the night-sky background
(NSB) is measured and stored in the DB. For the RWS, this value is again read out from the DB,
and NSB photons with that rate are simulated. Whereas for standard MC simulations the NSB rate
is generally set constant throughout the FoV, even very inhomogeneous NSB fields (such as the one
around the Galactic Centre in the right panel of Figure 2) are correctly simulated in our approach.
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Table 1: List of parameters that are used for the simulation of a run.

Quantity Type Comment
(per pixel, telescope, or for array)

Active IACTs - -
Telescope Tracking array see text
Source Position array see text
Optical Efficiency ε telescope -
Transparency Coefficient array see text
Camera Focus telescope only relevant for CT5
Trigger Settings telescope -
Live-time fraction telescope used for camera dead-time
Broken Pixels pixel for High and Low Gain
PMT Gain pixel -
Hi-Lo Ratio pixel -
Flatfield Coefficient pixel -
Night-Sky Background pixel see text
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Figure 2: Left: Pedestal shapes of a specific pixel with a measured NSB rate of 47MHz as a function of
the charge (centered around 0). The blue curve corresponds to the measured charge histogram of the actual
observation, and the red one shows the result of the simulation. Right: Measured NSB map of CT5 for an
observation of the Galactic Centre. The values that are denoted on the color bar are given in MHz/pixel.

To prepare the shower simulation, the start and end times of the respective run are read out
from the DB. The N events to be simulated are equally distributed over the time window to simulate
a constant source, and a unique time stamp is assigned to each event. In case the simulation of a
run is split into more than one slice, the time window of the run is splitted accordingly. The
input coordinates to be used for the simulation are given in J2000 sky coordinates. Two sets of
coordinates are set and fixed throughout the run: The pointing position and the source position. The
source position can either be set manually or read out automatically for runs where a specific source
was observed. If diffuse simulations shall be generated, a diffuse cone angle around the source
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position is set additionally, and the directions of the simulated particles are distributed uniformly
within this circle. Arbitrary source shapes can be generated by cutting in at analysis level. At the
beginning of the simulation of each particle, the pointing direction of the telescopes is updated to
simulate the trajectory of the source on the sky. The directional origin of the particle is converted
accordingly. This approach corresponds to a complete, realistic simulation of the movement of a
constant source in the night sky which is being tracked by an array of IACTs. To mimic pointing
uncertainties, the position of each IACT is offset constantly throughout the run according to a 2D
Gaussian with σ = 15′′.

To account for variations of the atmospheric quality, the Cherenkov transparency coefficient
[13] is read out from the DB. Instead of applying it to the photon attenuation during the shower
simulation process directly, it is multiplied to the simulated relative optical efficiency of each par-
ticipating IACT.

2.4 High-level Analysis

The high-level analysis analysis framework has been adapted to work with RWS. This implies
several analysis modules, which is explained in the following.

2.4.1 RWS MC Analysis

A data set of RWS can be analysed in the same manner as actual data. A list of previously
simulated runs is passed to the analysis framework, and a test position is chosen in sky coordinates.
This usually corresponds to the catalogue position of the source. As a proper reconstructed sky
coordinate is assigned to each event, the generation of advanced, sky-coordinate-based diagnostic
plots and even simulated acceptance maps is technically already possible.

For the MC analysis, the simulations can be re-weighed to a user-defined spectral shape. Up
to now, power-law, log-parabola, and exponential cut-off power-law shapes are implemented. The
user chooses between using the full available event statistics or alternatively a differential flux to
re-weigh to. Both event weighing or event throwing has been implemented.

2.4.2 Morphology Fitting

Providing a more realistic simulation approach, RWS are very well suited for the extraction of
the instrument point spread function (PSF), thus allowing more precise morphological studies.

With the classical simulation approach, lookup tables are normally generated to store the PSF
for different varying observation configurations. When using RWS, this is not anymore necessary
as the PSF of a given source can be directly simulated (see Section 2.4.1). The current approach is
such as to run a MC analysis with a fine binning of the ϑ 2 histogram, where the typical bin width is
set to 2 ·10−4 deg2. This resulting MC ϑ 2 histogram is then used as the reference point-source PSF
for the morphology fitting. The functionality has been fully implemented and successfully tested.

Simulated and measured ϑ 2 histograms of PKS 2155−304 and Markarian 421 are shown on
the left and right panel of Fig. 3, respectively. For both sources, an excellent MC-Data agreement
is obtained. Without having to assume systematic uncertainties, the morphology fit yields no exten-
sion for both. The [1σ ,3σ ] upper limits on a potential Gaussian extension width are [13.7′′,23.0′′]
for PKS 2155−304 and [23.4′′,33.5′′] for Markarian 421, respectively.
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Figure 3: MC-Data comparisons of the squared angular distance (ϑ 2) to the source position for PKS
2155−304 (left) and Mrk 421 (right). On both plots, the blue and green histograms denote measured ON
and OFF events (the latter scaled down to the size of the ON region). The red histograms correspond to the
respective PSFs, obtained using matching RWS which are re-weighed to the spectral shape of the sources.

2.4.3 Spectral Fitting

Spectral fit results obtained with IRFs from RWS are expected to be more precise because of
smaller systematic uncertainties.

The IRF generation with RWS MCs has been adapted to the software framework. IRFs are
filled and read out on a per-run basis, hence again no interpolation of lookup tables is necessary.
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Figure 4: Energy Spectra of PKS 2155−304 (left) and Mrk 421 (right) as obtained with IRFs from RWS.

Spectral fits with the new approach have been carried out for PKS 2155−304 and Markarian
421. The results are shown in Figure 4. As the implementation of the adapted fitting approach still
has to be fully validated, the results are to be considered as preliminary.

3. Conclusions

Here we introduced a novel simulation approach for IACT arrays which accounts for the run-
specific observation and detector settings. The method has been fully developed and implemented
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into one of the simulation and analysis frameworks of H.E.S.S. As the concept leads to a more
realistic simulation, a reduction of systematic errors is expected. The impact of this expected
improvement on the PSF extraction has already been shown in Section 2.4.2. In this regard, mor-
phology measurements with IACTs have been brought to a whole new level. Besides reduced
systematic uncertainties, the RWS approach is furthermore computationally more efficient for the
simulation of entire IACT data sets with various instrument settings and observation conditions.
This will become more and more important for future, increasingly complex IACT arrays, such as
the Cherenkov Telescope Array.
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[12] J. Aleksić et al., Measurement of the Crab Nebula spectrum over three decades in energy with the
MAGIC telescopes, Journal of High Energy Astrophysics 5 (Mar., 2015) 30–38.

[13] J. Hahn et al., Impact of aerosols and adverse atmospheric conditions on the data quality for spectral
analysis of the H.E.S.S. telescopes, Astroparticle Physics 54 (Feb., 2014) 25–32.

7

http://arxiv.org/abs/1509.0198
http://arxiv.org/abs/1310.5877

