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Gamma-ray emission from large structures is useful for tracing the propagation and distribution
of cosmic rays throughout our Galaxy. For example, the search for gamma-ray emission from
Giant Molecular Clouds may allow us to probe the flux of cosmic rays in distant galactic regions
and to compare it with the flux measured at Earth. Also, the composition of the cosmic rays can
be measured by separating the gamma-ray emission from hadronic or leptonic processes. In the
case of emission from the Fermi Bubbles specifically, constraining the mechanism of gamma-ray
production can point to their origin. HAWC possesses a large field of view and good sensitivity to
spatially extended sources, which currently makes it the best suited ground-based observatory to
detect extended regions. We will present preliminary results on the search of gamma-ray emission
from Molecular Clouds, as well as upper limits on the differential flux from the Fermi Bubbles.
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1. Introduction

One of the topics in the modern field of high-energy astrophysics is the origin and propaga-
tion of cosmic rays. However, the directional information of the cosmic rays is lost due to their
interaction with the interstellar magnetic field. The observation of the gamma-ray emission by the
interaction of cosmic rays with interstellar media (i.e. radiation fields, matter, etc) is one of the
tools that helps trace the origin, acceleration, propagation and distribution of cosmic rays through
the galaxy.

Probing the flux of cosmic rays in distant galactic regions can be achieved by measuring the
gamma-ray emission from Giant Molecular Clouds (GMCs) that are located far from cosmic-ray
sources, i.e. passive clouds. This is because the gamma-ray emission from GMCs is proportional
to the cosmic-ray flux, hence this is an indirect way to measure the galactic cosmic-ray flux and
can be compared to the measured cosmic ray flux at Earth [1].

The gamma-ray signal can also help distinguish between its possible hadronic or leptonic
origin, leading to a study of the composition and origin of the cosmic rays. In the case of emission
from the Fermi Bubbles specifically, constraining the mechanism of gamma-ray production can
point to their origin [2, 3, 4, 5] and give an understanding of the evolution of our galaxy.

The HAWC gamma-ray observatory can search for large-scale structures thanks to its large
field of view of 2 sr and high-duty cycle of > 95%. HAWC is sensitive to gamma rays with ener-
gies between 100 GeV and 100 TeV. It is located on the volcano Sierra Negra in the state of Puebla,
Mexico, at an altitude of 4100 m a.s.l. HAWC uses the water Cherenkov technique to detect the
electromagnetic component of the shower fronts of extensive air showers that reach the ground.
From the footprint of the shower, the direction of the primary gamma ray or cosmic ray that in-
teracts with the atmosphere is reconstructed. In this presentation, data recorded by the HAWC
observatory is used to search for gamma-ray signal from large galactic structures.

2. Giant Molecular Clouds

GMCs are dense concentrations of interstellar gas containing masses around 104− 106 M�
and with sizes of 50−200pc. They are composed mainly of cold, dark dust and molecular gas —
mostly molecular hydrogen and helium. GMCs are the main factories of stars in the galaxy.

The gamma-ray flux, produced by the interaction of cosmic rays with the GMC is proportional
to

Fγ ∝ ΦCR
M5

d2
kpc

, (2.1)

where ΦCR is the cosmic-ray flux, M5 = M/105M� is the mass of the molecular cloud, dkpc =

d/1kpc is the distance to the molecular cloud[1, 6]. Assuming that ΦCR is equal to the locally
measured cosmic-ray flux, the gamma-ray flux from equation 2.1 can be estimated as

Fγ =


1.45×10−13E−1.75

TeV (M5/d2
kpc)cm−2 s−1 100MeV < Eγ < 1TeV

2.85×10−13E−1.6
TeV (M5/d2

kpc)cm−2 s−1 Eγ > 1TeV
, (2.2)

where ETeV = E/1TeV and Fγ is the energy-integrated flux [6].
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GMCs have been observed mostly in the radio and infrared part of the electromagnetic spec-
trum since optical photons are not able to penetrate these dense regions. The most recent survey
of GMCs has be done by the CfA-Chile survey. The survey is based on the observation of the
CO-115 GHz frequency [7] and it is shown in Figure 1.

Figure 1: Distribution of CO gas from the CfA-Chile survey [7].

An overlap of 760 days of HAWC data, in the galactic region 0
◦
< l < 90

◦
, with a contour

from the Cfa-Chile survey is shown in Figure 2.

Figure 2: HAWC observations with CO maps contour.

2.1 Sensitivity to Molecular clouds

Using equation 2.2, we compare the value of the expected flux to the sensitivity of the HAWC
detector to extended sources. For the calculation of the sensitivity we assume disc regions of
3
◦

and 5
◦

due to the variety of the morphology of the GMCs. For the sensitivity we apply the
procedure described in [8] 1. The probability for false positives is set to α = 0.003(3σ) and α =

0.000006(5σ), and the probability of detection is set to β = 0.5. Figure 3 shows the sensitivity plot

1Named upper limit instead of sensitivity in the publication
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compared to the predictions from the GMCs Aquila Rift, Taurus and Hercules. Table 1 describes
the properties of the GMCs. HAWC does not expect to detect either of these objects with the
current dataset (760 days). However, HAWC may be sensitive to the GMCs at the 3σ level with its
5 year dataset.

Figure 3: HAWC sensitivity to extended sources and predicted integral fluxes of the GMCs in their respec-
tive declination. The error bars are calculated from the respective mass and distance errors given by the
references.

GMC Mass Distance Decl. Center Extension
Aquila Rift 1.5×105 M� [9] 225±55pc [10] −7.6

◦
<0.068 sr

Taurus 0.2×105 M� [11] 135±20pc [12] 25.8
◦

<0.203 sr
Hercules 0.5×105 M� 200±30pc [12] 14.7

◦
<0.013sr

Table 1: Description of GMCs. The mass of Hercules is assumed since no value was found in the literature.

A zoom-in of the GMCs in the HAWC map are shown in Figures 4, 5 and 6.
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Figure 4: Aquila Rift is located in the region 10
◦
< l < 35

◦
and 0

◦
< b < 15

◦
. White is the contour line of

the CO-gas map.

Figure 5: Taurus is located in the region 150
◦
< l < 175

◦
and −28

◦
< b <−2

◦
. White is the contour line of

the CO-gas map.

3. Fermi Bubbles

The Fermi-LAT Bubbles are two bubble-like structures extending 55
◦

above and below the
Galactic plane. They were discovered after looking for a counterpart of the microwave haze in data
from the Fermi Telescope [13]. In the literature exists several models that try to explain the origin
of the Fermi Bubbles. Some of these ideas include: outflow can be generated by activity of the
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Figure 6: Hercules is located in the region 40
◦
< l < 48

◦
and 7

◦
< b < 11

◦
. White is the contour line of the

CO-gas map.

nucleus in our galaxy producing a jet [4], wind from long-timescale star formation[2], periodic star
capture processes by the supermassive black hole in the Galactic center [3] or by winds produced
by the hot accretion flow in Sgr A* [5]. These models can be constrained by measuring the energy
spectrum of the gamma-ray emission. For example, if the gamma-ray emission cannot be explained
by hadronic processes, the wind from long-timescale star formation model could be ruled out.

3.1 Method

We use HAWC data, corresponding to the dates of 2014 November 27 to 2016 February 11, to
search for gamma-ray emission from the Northern Fermi Bubble region. The main challenge of the
analysis is to estimate the background. First, we need to distinguish between the shower signatures
of cosmic rays and gamma rays that deposit their energy in the HAWC observatory. Then we need
to estimate the isotropic flux by the direct integration method [14]. Due to the fact that the direct
integration needs stable performance from the detector, the lifetime of the the analysis is reduced to
290 days. Finally, since the integration time used is 24 hours due to the size of theFermi Bubbles,
effects from the large-scale anisotropy needs to be removed [15]. The analysis is done in 7 analysis
bins defined in the similar way as in [16].

After taking into account these effects, the excess calculation is given by

G′i = εG,i
E ′i − εC,iEi

εG,i− εC,i
, (3.1)

where, G′i is the final excess after corrections in pixel i; E ′i is the excess in pixel i without corrections
after applying gamma-hadron cuts; Ei is the excess in pixel i without corrections before applying
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gamma-hadron cuts; εG,i and εC,i are the gamma and hadron efficiencies after applying gamma-
hadron cuts. For more details on the analysis see [17].

3.2 Upper Limits

No significant excess was found, we proceeded to calculate upper limits on the flux. Figure 7,
shows the data points from the Fermi measurements, together with the HAWC upper limits. The
energy bins are obtained by combining the analysis bins with a weighted average (see [17] for the
description). The plot also features predictions from two hadronic and two leptonic models, all
obtained from [18]. The leptonic models are obtained from an electron spectrum with the shape
of a power-law with exponential cutoff interacting with the interstellar radiation field at 5 kpc from
the Galactic plane and the cosmic microwave background. The hadronic models assume a power-
law and power-law with a cutoff for the proton spectrum. The protons interact with the interstellar
medium and produce photons through pion decay. The IceCube model is obtained from [19] and it
is the counterpart of a neutrino flux model that best fist the IceCube data. Our result is not able to
constrain the models at energies below 1 TeV. However at high energies, it implies, for a hadronic
model, that there is a cutoff in the proton spectrum.
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Figure 7: Measured flux of the Fermi Bubbles with HAWC upper limits. Hadronic and leptonic models that
explain the emission of the Bubbles are overlaid too.

4. Conclusion

Observations of large gamma-ray structures can give us an insight in how cosmic rays propa-
gate and distribute in the galaxy, as well as the mechanisms that produce them. This information is
useful to understand the evolution of our galaxy.

Using data from the HAWC observatory, we searched for gamma-ray signal in three GMCs
and the Fermi Bubbles. In the case of the Fermi Bubbles we calculated upper limits at 95% C.L.
The upper limits constrain some hadronic models, including a neutrino model that describes the
IceCube data.
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