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The High Energy Stereoscopic System (H.E.S.S.) has been searching for counterparts of Gamma
Ray Bursts (GRBs) for many years. In 2012 the system was upgraded with a fifth 28 m diameter
telescope (CT5) which is equipped with faster motors for rapid repointing, marking the start of
the second phase of H.E.S.S. operation (H.E.S.S. II). CT5s large light collection area of 600m2

improves the sensitivity to low-energy gamma-rays and even extends the energy range below 100
GeV. The search for counterparts continues now in the energy range of tens of GeV to tens of
TeV. A detection in this energy range would open a new window to the part of the spectrum of
these highly energetic explosions which Fermi-LAT has only successfully detected in a reduced
subset of events, with rather limited statistics. In the past years, H.E.S.S. has performed follow-
up observations based on GRB detections by Swi f t-BAT and Fermi-GBM/-LAT. This Target
of Opportunity observation program was carried out with a generalised Target of Opportunity
Alert system. This contribution will highlight key features of the Target of Opportunity Alert
system, present follow-up statistics of GRBs as well as detailed results of promising follow-up
observations.
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1. Introduction & Motivation

Gamma Ray Bursts (GRBs) are among the most violent phenomena known in the universe
emitting up to 1055erg within typically only a few seconds. They are seen as short intense periods
of γ-ray emission in the keV to MeV energy range lasting from as little as 0.1 s up to a few hundred
seconds. This intense emission phase is called the prompt phase of the GRB and is followed by
a so called afterglow phase during which the emission decays on a longer timescale. During the
afterglow phase of the GRB, counterparts in all wavelengths are commonly detected, from radio
to optical. An explanation of these phases is provided in the so called Fireball-Model [1, and ref-
erences therein]. In this model, particle acceleration takes place at multiple points of the systems
evolution. It assumes that the formation of a new compact object produces an ultra-relativistic jet
that is powered by the compact object as the central engine. The engine emits plasma shells with
different Lorentz factors Γ(t) which will eventually collide. During every collision of two shells,
shock acceleration, giving rise to γ-rays in a broad energy range from keV- potentially up to TeV
energies can be produced. At some point, the shells (and the jet) will hit the unshocked interstellar
medium. This collision is thought to be the start of the afterglow phase during which shock accel-
eration can take place again. If the γ-radiation produced in these various stages of the phenomenon
can actually escape from the object heavily depends on the photon field density which, in the case
it is too high, will lead to γ-γ absorption that effectively cascades down the initial energy of the
photons. Similarly, the highest energy photons can be absorbed through interactions with the Ex-
tragalactic Background Light (EBL) if the distance between the object and the observer is too large.

Nowadays, GRBs with a confirmed High-Energy (HE, Eγ > 100 MeV) γ-ray emission are
rare. A confirmed component above energies of 100MeV is present in only 5 % of the detected
GRBs, while above energies of 10GeV this fraction is further reduced to below 1 %[2]. The
GRBs with a detected high energy component are the ones that challenge the current fireball-
model paradigm the most, demanding extreme gamma factors and high acceleration efficiencies.
Thanks to the thousands times larger effective area, ground based γ-ray astronomy allows for coun-
terpart searches with several orders of magnitudes better sensitivity on short timescales (below a
few hours) at energies around 100GeV [3]. A detection of a GRB at these energies would therefore
further challenge the current understanding of the GRB phenomenon and would provide a deeper
insight into particle acceleration in GRBs.

Even though the ground-based γ-ray community is trying for quite some time to find counter-
parts above energies of 100 GeV, this effort remains unsuccessful to date. H.E.S.S. reported about
the observations taken in the GRB follow-up program in the years 2003 to 2007 [4]. The same
program is still running and will likely be continued until the decommissioning of H.E.S.S. Several
improvements to the system were made in the past: In 2012 a fifth Telescope was deployed: CT5
has the largest light collection area in ground-based gamma-ray astronomy with 600m2 which low-
ers the energy-threshold down to around 50 GeV for good observation conditions. At these energies
the extragalactic background light (EBL) does not attenuate the γ-rays significantly up to redshifts
of around z = 1.5 [5]. Additional technical improvements in the alert system and the follow-up
procedures will be described in the following section.
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2. Follow-up Procedures

GRB observations by H.E.S.S. are issued by a fully automated system that is integrated into
the central control software [6] of the experiment. The automation ranges from the reception of
alerts to preliminary analysis results. This system is a software chain which receives alerts1 in
the VOEvent [8] format defined by the International Virtual Observatory Alliance2. All alerts pass
through a processing and filtering facility with each alert being correlated to science requirements
defined by the Collaboration. Only alerts that fulfil all specified follow-up requirements will be
forwarded to the central telescope steering software which is able to automatically override the
current observation schedule in order to observe the burst location. The data that is taken is anal-
ysed automatically by a preliminary analysis in real time. Based on these preliminary results the
prolongation of the observations are being decided. The system is not restricted to GRB follow-up
observation but also enables us to promply follow-up on all kinds of Multi-Messenger transient
targets (see PoS(ICRC2017)653).

Time-critical observations such as GRB follow-up observations will make use of a special
repointing procedure which reduces the necessary time to restart the observations. Observations
will start as soon as the target location is inside the field of view of CT5, regardless of the status
of CT1-4 (which can join the observation afterwards) [9]. During the development of CT5, a fast
repointing speed was one key requirement. In order to allow for even faster repointing speeds, CT5
is allowed to slew overhead through the zenith in the so called "reverse" mode, if it is the fastest
way to reach the target position [11].

In the GRB follow-up program we perform observations based on GRB detection from Fermi-
LAT [12], Fermi-GBM [13] and Swi f t-BAT [14] which are all being provided by the Gamma-ray
burst coordinate Network (GCN) [10]. In detail we make use of the following alert types:

• Fermi#GBM_Gnd_Pos,

• SWIFT#BAT_GRB_Pos,

• Fermi#LAT_Updated_Pos and

• Fermi#LAT_Offline_Pos.

Multiple sets of follow-up requirements are connected to each alert type. If the timescale on
which the burst location becomes visible for H.E.S.S. is short enough, the observations will start
automatically while making use of the accelerated transition scheme mentioned before which al-
lows CT5 to slew in reverse mode. If the position becomes visible not immediately, but with less
than four hours delay with respect to the burst time tBurst, the shifters will schedule the observations
manually. For locations that become visible more than 4 hours after the burst, an expert on-call

1We make use of the tool comet [7]
2see www.ivoa.net
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will be informed in order to decide if H.E.S.S. can add valuable information by observing this in-
dividual burst regardless of the long delay.

The full system is regularly tested using self issued alerts that enter the system in the same
way the GRB alerts do. This allows for stable operations of all sub-components of the system.

3. Follow-up Statistics

More than 30 GRB detections by Fermi and Swi f t were followed up by H.E.S.S. since 2012.
CT5 was not available for all observations. Among the reasons are technical difficulties or unclear
weather situations which make observations with CT5 not possible. The observations for which
CT5 was available are displayed in Figure 1. Each follow-up is shown in the plane of the zenith
angle under which H.E.S.S. could observe the final burst position and the time of the observation
with respect to tBurst. The delay between the observation start and tBurstis a sum of the time neces-
sary for i) receiving and processing of the alert and repointing of the telescopes, ii) the detection
of the event itself and the distribution of it which involves the downlink from the satellites to the
ground and ultimately to the H.E.S.S. site. The delay of each individual alert is the baseline for
all H.E.S.S. follow-up opportunities. The typical delay ranges for the distribution of the different
alert times utilised in the GRB program are highlighted on the bottom of Figure 1 and were derived
based on the history of alerts from 2015 on. The green circles highlight the three bursts that will be
discussed in more detail. Reaction times of less then 100 seconds are achieved on a regular basis.

4. Analysis Results of selected Observations

4.1 Selected Observations

In the following, three follow-up observations of GRBs will be discussed in more detail:

• GRB140818B, a long burst detected by Swi f t-BAT, followed up by H.E.S.S. promptly with
a delay of 120 s with respect to the burst time. The location of the burst was observed for
two hours with an average zenith angle of 25 deg.

• GRB140901A, a short burst detected by Fermi-GBM, followed up with a delay of roughly
3 hours. The positional uncertainty quoted for this burst of 2.5 deg is just as large as the
H.E.S.S. II field of view. The position was also observed for two hours with an average
zenith angle of 22 deg.

• GRB 150415A, a mid duration burst (T90 = 8s) detected by Fermi-GBM, followed up
promptly. Observations started only 80 s after the detection by Fermi-GBM. The position
was updated which resulted in a repointing of the H.E.S.S. array after the first 28 minutes
of observations. This final position was then observed for the remaining 17 minutes of the
night. The position uncertainty of this burst was quite large with 3.6 deg and exceeded the
size of the CT5 field of view. The location was observable for roughly 45 minutes with an
average zenith angle of 14 deg.
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Figure 1: Overview of H.E.S.S. GRB follow-up observations from 2012 to may 2017 for which CT5 was
available. Each marker denotes the start of an observation. The line following the marker denotes the
evolution of the zenith angle under which the final location of the burst was visible from the H.E.S.S. site at
the time of the observation. The typical delay timescales for every alert type was evaluated using the public
alert archive from 2015 to 2017 and is shown at the bottom of this figure. This delay is the baseline for
the the H.E.S.S. reaction and repointing speed. Red markers denote observations that were taken in a fully
automated way, while the the blue ones were scheduled by hand. The additional red axis denotes the energy
threshold that roughly corresponds to the respective zenith angle.

Additional information on these bursts is given in table 1. Unfortunately, for neither of the three
bursts a redshift could be measured. None of the three observations yielded a detection. Never-
theless they highlight nicely the potential, but also the intrinsic difficulties in the GRB follow-up
program.

4.2 Results

The observations for all three bursts did not reveal any significant emission in the respective
fields of view. The observation triggered by Swi f t-BAT (GRB140818B) has an accurate enough
localisation so that the differential flux upper limits could be calculated at the location of the Swi f t-
BAT detection. For GRB140901A and GRB150415A, detected by Fermi-GBM, the H.E.S.S. fields
of view only cover 68 % of the GBM localisation at best. Therefore the limits obtained are given at
the best fit location as well as 1.5 deg off the center of the field of view in the case of GRB140901A.
In the case of GRB150415A, the limit at the best fit location could only be calculated for the second
part of the observation due to the coordinate update. Therefore we present the differential flux upper
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GRB140818B GRB140901A GRB150415A

General information on the GRB detection
Observations triggered by Swi f t-BAT Fermi-GBM Fermi-GBM

T90[s] 18.1 0.16 8.0
Also detected by UVOT, XRT,IPN IPN −

Significance 10σ 68σ 19σ

Redshift × × ×
Final position of the GRB

Right-Ascension (J2000) [deg] 217.15 15.82 220.63
Declination (J2000) [deg] −1.36 −32.76 −19.34
Position uncertainty [deg] 0.05 2.5 3.6

H.E.S.S. Observation parameters
Average zenith angle [deg] 25 22 13.7

Delay of observation start w.r.t tBurst 120 s 3 hours 80 s
Observation time 2 hours 2 hours 40 minutes

Fully automated reaction X × X

Table 1: Summary of information about the three selected H.E.S.S. GRB follow-up observations and their
detection in X-rays.

limits at the intersection of both observed fields, as well as at the best fit position of the burst. The
limits at these different locations can be seen as a benchmark sensitivity that H.E.S.S. obtains for
observations in similar observing conditions.

The observations were analysed using the model-analysis [15] and were cross-checked with
an independent calibration, reconstruction and analysis chain [16]. The differential flux limit cal-
culation was done by assuming that the potential γ-ray emission follows a power-law in energy
with a spectral index of 2. Due to the low statistics of the observations, the limits were computed
by rescaling the photon counts off of the target region to the live-time in the target region. This
avoids random fluctuations and the resulting differential limits can be understood as the sensitivity
of H.E.S.S. II for such observations. The limits are presented in Fig. 2.

The differential flux upper-limits are on the level of 10−11 ergcm−2 s−1, depending on the
energy. For all three bursts an energy threshold of less then 100 GeV was achieved.

5. Conclusions & Outlook

H.E.S.S. in its second phase will continue to perform follow-up observations of GRBs de-
tected in the keV to MeV energy range by Fermi and Swi f t. By employing a fully automated
system H.E.S.S. is able to react as fast as possible to GRB detections. CT5 will remain the world
largest Cherenkov Telescope, possessing great discovery potential for GRBs due to the low energy
threshold and its rapid slewing speed. Since there is no gap in energy to the Fermi-LAT experi-
ment, the first detection of a GRB using the Imaging Air Cherenkov Telescope method is a matter
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Figure 2: The upper limit results obtained from the H.E.S.S. observations for all three bursts (GRB140818B,
GRB140901A and GRB150415A from left to right) are shown in red. The best fit spectral model for the
detection of each burst is shown in blue. For the two observations triggered by Fermi-GBM, upper limits
obtained off of the center of the field of view are shown as well.

of luck and time. Due to the large effective area of the Imaging Air Cherenkov Telescope method,
H.E.S.S. might also be able to detect GRBs that are too faint for Fermi-LAT on the typical GRB
timescales of at most a few hundred seconds. The follow-up procedures and requirements are being
optimised to target specific physics questions.
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