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Ultra-high-energy cosmic rays (UHECRS) |

Energies up to a few 100 EeV = 10? eV ~ 16 J
Protons and/or other nuclei (strong limits on photon and neutrino fractions)
Origin unknown, most likely extragalactic

Phenomena in UHECR propagation |

Adiabatic energy loss due to the expansion of the Universe (redshift)

Interactions with

cosmic microwave background (CMB)
extragalactic background light (EBL)

e < 3meV
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— production of secondary particles (protons, neutrinos, photons)
Deflections by intergalactic and galactic magnetic fields

Interactions with background photons |

e 2 1 MeV

Pair photoproduction

D+~v—p+et e (each e with ~ 0.05% of p energy)

(also with other nuclei)

Photodisintegration
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Lighter nuclei — shorter interaction lengths

e 2> 8 MeV

Pion photoproduction ¢ > 150 MeV
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| The GZK horizon |

protons injected with y = 2, no cutoff
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All info about sources at z > 1 is lost, if we look at protons/nuclei alone!
(possible magnetic suppressions and/or Galactic CR admixture below 10 eV)
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| The secondaries |

Electrons and photons produced with £ ~ a few EeV (7 prod. on CMB) /
a few PeV (7 prod. on EBL / ¢ prod.), initiate electromagnetic cascades

Shape of cascade spectrum at Earth independent of initial energy [1]

Neutrinos produced with £ ~ a few EeV (CMB) / a few PeV (EBL),
unaffected by propagation (except for flavour oscillations and redshift)

Neutrinos carry more information, but harder to detect

A multi-messenger approach can give info about distant UHECR sources

Results from SimProp [2] Monte Carlo |

We considered three models of UHECR source emissivity evolution:
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and two models for the UHECR source spectrum and composition:

“dip model” mixed composition model
“soft sources” “hard sources”
100% p 75% p, 25% He 35% p, 30% He, 25% N, 10% Si
2.6, Lyni 2.6, Lyni
¥ =1 2.5, Lgpr ¥ =14 2.5, Lgpr v = 1.0, no source evolution
2.4, LAcCN 2.4, LAGN

Ecut = 1022 eV Ecut =2/ X 1018 eV Ecut = 64 X 1018 eV

(fractions at 10'° eV; Qini(E) o< (E/Ey) " exp(—E/ Ecut))
The resulting UHECR fluxes above 10 eV are very similar:

(from Ref. [3])
But the predictions for neutrino and ~-ray fluxes are rather different:
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(from Ref. [2], using cascade development model from Ref. [1])
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